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1. Introduction

The origin of the gauge/gravity correspondence is the twofold description of D-branes [1, 2].

On one hand the D-branes have an open string description as hypersurfaces on which open

strings can end. The dynamics of these hypersurfaces can be described by the (super)

Yang-Mills theory in flat space. On the other hand, the D-branes also appear as solitons

of the type II low energy closed string effective action and are solutions of the classical

equations of supergravity. By relating these two descriptions one can get information of

the quantum dynamics of gauge theories by studying classical supergravity.

In its original form, all matter fields of the gauge theory side of the correspondence

are in the adjoint representation. Clearly, if we want to apply this duality to more realistic

scenarios we should be able to obtain a holographic description of theories with matter in

the fundamental representation i.e. quarks. This can be achieved by adding open strings to

the supergravity side of the correspondence. The simplest way to do this is by considering

fundamental strings whose ends are fixed at the UV, as was done in ref. [3] to compute the

expectation values of the Wilson loop operators. Notice that the fundamentals introduced

in this way are external static quark sources.

Alternatively, one can try to generalize the gauge/gravity correspondence by adding

brane probes embedded in supergravity backgrounds. The fluctuations of the probe cor-

respond to degrees of freedom of open strings connecting the brane probe and those that

generated the background [4]. On the field theory side these open strings are identified

with fundamental hypermultiplets of dynamical quarks whose masses are proportional to

the distance between the two types of branes.
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One can use this setup to add flavor to some supergravity duals [5]. In particular, for

the AdS5×S5 geometry the appropriate flavor branes are D7-branes which fill the spacetime

directions of the gauge theory and are extended along the holographic direction [6]. The

starting point in this construction are two stacks of D3- and D7-branes which intersect

along three common spatial directions. If the number of D3-branes is large we can take

the decoupling limit and substitute them by the AdS5 × S5 geometry. Moreover, when

the number of D7-branes is small compared to the number of D3-branes, we can assume

that the D7-branes do not backreact on the geometry and treat them as a probe whose

fluctuation modes are identified with the mesons of the dual gauge theory. Remarkably,

the mass spectrum of the complete set of fluctuations can be obtained analytically and the

identification between the different modes and the dual operators can be carried out [7].

Different flavor branes and their spectra for several backgrounds have been considered in

the recent literature (see [8]–[20]).

In this paper we generalize these results for the D3-D7 system to a general class of

BPS intersections of two types of branes, both in type II theories and in M-theory. In our

approach the lower dimensional brane is substituted by the corresponding near-horizon

geometry, while the higher dimensional one will be treated as a probe. Generically, the

addition of the probes to the supergravity background creates a defect in the gauge theory

dual in which extra hypermultiplets are localized. In the decoupling limit one sends the

string scale ls to zero keeping the gauge coupling of the lower dimensional brane fixed. It is

straightforward to see that the gauge coupling of the higher dimensional brane vanishes in

this limit and, as a consequence, the corresponding gauge theory decouples and the gauge

group of the higher dimensional brane becomes the flavor symmetry of the effective theory

at the intersection.

The prototypical example of a defect theory is the one dual to the D3-D5 intersection.

This system was proposed in ref. [4] as a generalization of the usual AdS/CFT correspon-

dence in the AdS5 × S5 geometry. Indeed, if the D5-branes are at zero distance of the

D3-branes they wrap an AdS4 × S2 submanifold of the AdS5 × S5 background. It was

argued in ref. [4] that the AdS/CFT correspondence acts twice in this system and, apart

from the holographic description of the four dimensional field theory on the boundary of

AdS5, the fluctuations of the D5-brane probe should be dual to the physics confined to the

boundary of AdS4.

The field theory dual of the D3-D5 intersection corresponds to N = 4, d = 4 super

Yang-Mills theory coupled to N = 4, d = 3 fundamental hypermultiplets localized at

the defect. In ref. [21] the action of this model in the conformal limit of zero D3-D5

separation was constructed and a precise dictionary between operators of the field theory

and fluctuation modes of the probe was obtained (see also refs. [22, 23]). We will extend

these results to the case in which the distance between the D3- and D5-branes is non-zero.

This non-vanishing distance breaks conformal invariance by giving mass to the fundamental

hypermultiplets. Interestingly, the differential equations for the quadratic fluctuations can

be decoupled, solved analytically and the corresponding mass spectra can be given in closed

form. These masses satisfy the degeneracy conditions expected from the structure of the

supersymmetric multiplets found in ref. [21].

– 3 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
7

The D3-D5 intersection can be generalized to the case of a Dp-D(p+2) BPS intersec-

tion, in which the D(p+2)-brane creates a codimension one defect in the (p+1)-dimensional

gauge theory of the Dp-brane. The differential equations of the fluctuations can also be

decoupled in this more general case. Even if we will not be able to solve these equations

in analytic form for p 6= 3 , we will disentangle the mode structure and we shall find the

corresponding mass spectra by numerical methods. We will see that the numerical values

of the masses satisfy degeneracy relations which are very similar to the ones found for the

exactly solvable D3-D5 system.

Another interesting case of defect theory arises from the D3-D3 BPS intersection,

in which the two D3-branes share one spatial dimension. In the conformal limit this

intersection gives rise to a two-dimensional defect in a four-dimensional CFT. In this case

one has, in the probe approximation, a D3-brane probe wrapping an AdS3×S1 submanifold

of the AdS5×S5 background. In ref. [24] the spectrum of fluctuations of the D3-brane probe

in the conformal limit was obtained and the corresponding dual fields were identified (see

also [25]). Notice that in this intersection both types of branes have the same dimensionality

and the decoupling argument explained above does not hold anymore. Therefore, it is more

natural to regard this system as describing two N = 4 four-dimensional theories coupled to

each other through a bifundamental hypermultiplet living on the two-dimensional defect.

This fact is reflected in the appearance of a Higgs branch in the system, in which the two

types of D3-branes merge along some holomorphic curve. We will study this system when

a non-zero mass is given to the hypermultiplet. Again, we will be able to solve analytically

the differential equations for the fluctuations and to get the exact mass spectrum of the

model. This system generalizes to the case of a Dp-Dp intersection, in which the two

Dp-branes have p− 2 common spatial directions. For p 6= 3 we will get the mass spectrum

of the different modes from a numerical integration of the differential equations of the

fluctuations.

The D3-D7 intersection described above corresponds to a codimension zero “defect”.

This configuration is a particular case of the Dp-D(p+4) BPS intersection in which the

D(p+4)-brane fills completely the (p+1)-dimensional worldvolume of the Dp-brane and

acts as a flavor brane of the corresponding supersymmetric gauge theory in p+1 dimensions.

Again, for p 6= 3 one has to employ numerical methods to get the mass spectrum.

This paper is organized as follows. In section 2 we will consider a general intersection

of two branes of arbitrary dimensionalities. By placing these two branes at a non-zero

distance, and by imposing a no-force condition on the static configuration, we get an

equation which determines the BPS intersections. Next, we consider fluctuations of the

scalars transverse to both types of branes around the static BPS configurations. For D-

brane probes embedded in AdS5×S5 the corresponding differential equation can be reduced,

after a change of variables, to the hypergeometric differential equation. Thus, in these

cases the form of the fluctuations can be obtained analytically and the mass spectra of the

transverse scalar fluctuations can be found by imposing suitable boundary conditions at the

UV. In the general case the fluctuation equation can be transformed into the Schrödinger

equation for some potential, which allows to apply the WKB method to get an estimate of

the mass levels.
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Figure 1: A general orthogonal intersection of a p1- and p2-brane along d spatial directions.

In section 3 we study in detail the complete set of fluctuations, involving all scalar

and vector worldvolume fields, of the D3-D5 intersection. In general, these fluctuations

are coupled to each other and one has to decouple them in order to get a system of

independent equations. The decoupling procedure is actually the same as in the more

general Dp-D(p+2) intersection and is given in detail in appendix B. In section 3 we use

this procedure to get the exact mass spectrum of the D3-D5 system. We also recall the

fluctuation/operator dictionary found in ref. [21] and we check that the masses we find for

the modes are consistent with the arrangement of the dual operators in supersymmetric

multiplets.

In section 4 we perform a complete analysis of the exactly solvable D3-D3 intersection.

In this case the differential equations can also be decoupled and solved in terms of the

hypergeometric function. As a consequence, the exact mass spectrum can be found and

matched with the fluctuation/operator dictionary established in ref. [24]. We will also

show the appearance of the Higgs branch and how it is modified by the fact that the

hypermultiplet is massive.

In the main text we will concentrate on the study of the exactly solvable intersections

and we have left other cases to the appendices. These cases include the Dp-D(p+2), Dp-

Dp, Dp-D(p+4) and F1-Dp intersections of the type II theory, as well as the M2-M2,

M2-M5 and M5-M5 intersections of M-theory. In all of them we compute the numerical

mass spectra and their WKB estimates. Finally, in section 5 we summarize our results and

point out some possible extensions of our work.

2. Fluctuations of intersecting branes

Let us consider an orthogonal intersection of a p1-brane and a p2-brane along d common

spatial directions (p2 ≥ p1), as depicted in figure 1. We shall denote this intersection,

both in type II string theory and M-theory, as (d|p1 ⊥ p2). We shall treat the lower
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dimensional p1-brane as a background, whereas the p2-brane will be considered as a probe.

The background metric will be taken as:

ds2 =

[

r2

R2

]γ1

(−dt2 + (dx1)2 + · · · + (dxp1)2) +

[

R2

r2

]γ2

d~y · d~y , (2.1)

where R, γ1 and γ2 are constants that depend on the case considered, ~y = (y1, . . . , yD−1−p1)

with D=10, 11 and r2 = ~y · ~y. In the type II theory the supergravity solution also contains

a dilaton φ, which we will parametrize as:

e−φ(r) =

[

R2

r2

]γ3

, (2.2)

with γ3 being constant (in the case of a background of eleven dimensional supergravity we

just take γ3 = 0).

Let us now place a p2-brane in this background extended along the directions:

(t, x1, . . . , xd, y1, . . . , yp2−d) . (2.3)

We shall denote by ~z the set of y coordinates transverse to the probe:

~z = (z1, . . . , zD−p1−p2+d−1) , (2.4)

with zm = yp2−d+m for m = 1, . . . ,D − p1 − p2 + d − 1. Notice that the ~z coordinates

are transverse to both background and probe branes. Moreover, we shall choose spherical

coordinates on the p2-brane worldvolume which is transverse to the p1-brane. If we define:

ρ2 = (y1)2 + · · · + (yp2−d)2 , (2.5)

clearly, one has:

(dy1)2 + · · · (dyp2−d)2 = dρ2 + ρ2dΩ2
p2−d−1 , (2.6)

where dΩ2
p2−d−1 is the line element of a unit (p2−d−1)-sphere. Obviously we are assuming

that p2 − d ≥ 2.

2.1 BPS intersections

Let us consider first a configuration in which the probe is located at a constant value of

|~z|, i.e. at |~z| = L (see figure 2). If ξa are a set of worldvolume coordinates, the induced

metric on the probe worldvolume for such a static configuration will be denoted by:

ds2
I = Gab dξadξb . (2.7)

In what follows we will use as worldvolume coordinates the cartesian ones x0 · · · xd and the

radial and angular variables introduced in eqs. (2.5) and (2.6). Taking into account that,

for an embedding with |~z| = L, one has r2 = ρ2 + ~z 2 = ρ2 + L2, the induced metric can

be written as:

ds2
I =

[

ρ2 + L2

R2

]γ1

(−dt2+(dx1)2+· · ·+(dxd)2)+

[

R2

ρ2 + L2

]γ2

(dρ2+ρ2dΩ2
p2−d−1) . (2.8)
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Figure 2: The two branes of the intersection are separated a finite distance. In the figure one of

the branes is represented as a one-dimensional object. An open string can be stretched between

the two branes.

The action of the probe is given by the Dirac-Born-Infeld action. In the configurations we

study in this section the worldvolume gauge field vanishes and it is easy to verify that the

lagrangian density reduces to:

L = −e−φ
√
− detG . (2.9)

For a static configuration such as the one with |~z| = L, the energy density H is just

H = −L. By using the explicit form of G in (2.8), one can verify that, for the |~z| = L

embedding, H is given by:

H =

[

ρ2 + L2

R2

]

γ1
2

(d+1)− γ2
2

(p2−d)−γ3

ρp2−d−1
√

det g̃ , (2.10)

where g̃ is the metric of the unit (p2 − d − 1)-sphere. In a BPS configuration the no-force

condition of a supersymmetric intersection requires that H be independent of the distance

L between the branes. Clearly, this can be achieved if the γi-coefficients are related as:

γ3 =
γ1

2
(d + 1) − γ2

2
(p2 − d) . (2.11)

Let us rewrite this last equation as:

d =
γ2

γ1 + γ2
p2 +

2γ3 − γ1

γ1 + γ2
, (2.12)

which gives the number d of common dimensions of the intersection in terms of the param-

eters γi of the background and of the dimension p2 of the probe brane. In the following

subsections we shall consider some particular examples.

2.1.1 Dp-brane background

In the string frame, the supergravity solution corresponding to a Dp-brane with p < 7 has

the form displayed in eqs. (2.1) and (2.2) with p1 = p, R given by

R7−p = 25−p π
5−p
2 Γ

(7 − p

2

)

gs N (α′)
7−p
2 , (2.13)
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and with the following values for the exponents γi:

γ1 = γ2 =
7 − p

4
, γ3 =

(7 − p)(p − 3)

8
. (2.14)

Moreover, the Dp-brane solution is endowed with a Ramond-Ramond (p+1)-form potential,

whose component along the Minkowski coordinates x0 · · · xp can be taken as:

[

C(p+1)
]

x0···xp
=

[

r2

R2

]
7−p
2

. (2.15)

Applying eq. (2.12) to this background, we get the following relation between d and

p2:

d =
p2 + p − 4

2
. (2.16)

Let us now consider the case in which the probe brane is another D-brane. As the brane

of the background and the probe should live in the same type II theory, p2 − p should be

even. Since d ≤ p, we are left with the following three possibilities:

(p|Dp ⊥ D(p + 4)) , (p − 1|Dp ⊥ D(p + 2)) , (p − 2|Dp ⊥ Dp) . (2.17)

2.1.2 Fundamental string background

In the string frame, the metric and dilaton for the background created by a fundamental

string are of the form of eqs. (2.1) and (2.2) for:

γ1 = 3 , γ2 = 0 , γ3 =
3

2
, R6 = 32π2(α′)3 g2

s N . (2.18)

In this case one gets from (2.12) that d = 0, which corresponds to the following intersection:

(0|F1 ⊥ Dp) . (2.19)

2.1.3 M2-brane background

Our next example is the geometry created by an M2-brane in M-theory. In this case one

has:

γ1 = 2 , γ2 = 1 , γ3 = 0 , R6 = 32π2l 6
P N , (2.20)

where lP is the Planck length in eleven dimensions. The worldvolume actions to be con-

sidered in this case are those of the M2- and M5-branes. The action of the M2-brane is the

sum of a Born-Infeld term (given by (2.9) with γ3 = 0) and a Wess-Zumino term which

is just the pullback to the worldvolume of the three-form potential of eleven-dimensional

supergravity. This pullback vanishes for the static configurations studied here and, thus,

we can apply safely to this case the analysis based on eq. (2.9). Moreover, the world-

volume dynamics of the M5-brane will be described by the so-called PST formalism [26].

The corresponding action contains a Born-Infeld part, together with other terms which

involve a worldvolume gauge field and the pullbacks of the three- and six-form potentials

of eleven-dimensional supergravity. These pullbacks vanish for the static configurations we

– 8 –
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are now analyzing. Furthermore, for the orthogonal intersections we are interested in, the

worldvolume gauge field is zero, as it was in the case of D-branes. Taking these facts into

account, one easily concludes that the PST action reduces for these configurations to the

form displayed in eq. (2.9) and, therefore, the no-force condition (2.12) is also valid in this

case.

By using the values of the γi coefficients written in eq. (2.20), eq. (2.12) becomes

d =
p2 − 2

3
. (2.21)

Taking p2 = 2, 5 we get the following intersections:

(0|M2 ⊥ M2) , (1|M2 ⊥ M5) , (2.22)

which are indeed the same as those obtained by studying the supersymmetric solutions of

eleven-dimensional supergravity (see, for example [27]).

2.1.4 M5-brane background

The background corresponding to an M5-brane in eleven dimensional supergravity has

γ1 =
1

2
, γ2 = 1 , γ3 = 0 , R3 = π l 3

P N , (2.23)

which leads to

d =
2p2 − 1

3
. (2.24)

For p2 = 5 in the previous expression we get the intersection:

(3|M5 ⊥ M5) , (2.25)

which again coincides with the one found in [27].

2.2 Fluctuations

In what follows we will assume that the condition (2.11) holds. This fact can be checked

for all the particular supersymmetric intersections that will be analyzed below.

Let us now study the fluctuations around the |~z| = L embedding. Without loss of

generality we can take z1 = L, zm = 0 (m > 1) as the unperturbed configuration and

consider a fluctuation of the type:

z1 = L + χ1 , zm = χm (m > 1) , (2.26)

where the χ’s are small. The dynamics of the fluctuations is determined by the Dirac-

Born-Infeld lagrangian which, for the fluctuations of the transverse scalars we study in this

section, reduces to L = −e−φ
√− det g, where g is the induced metric on the worldvolume.

By expanding this lagrangian and keeping up to second order terms, one can prove that:

L = −1

2
ρp2−d−1

√

det g̃

[

R2

ρ2 + L2

]γ2

Gab ∂aχ
m ∂bχ

m , (2.27)

– 9 –
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where Gab is the (inverse) of the metric (2.8). The equations of motion derived from this

lagrangian are:

∂a

[

ρp2−d−1
√

det g̃

(ρ2 + L2)γ2
Gab ∂bχ

]

= 0 , (2.28)

where we have dropped the index m in the χ’s. Using the explicit form of the metric

elements Gab, the above equation can be written as:

R2γ1+2γ2

(ρ2 + L2)γ1+γ2
∂µ∂µ χ +

1

ρp2−d−1
∂ρ (ρp2−d−1∂ρχ) +

1

ρ2
∇i∇i χ = 0 , (2.29)

where the index µ corresponds to the directions xµ = (t, x1, . . . , xd) and ∇i is the covariant

derivative on the (p2 − d − 1)-sphere. In order to analyze this equation, let us separate

variables as:

χ = ξ(ρ) eikx Y l(Sp2−d−1) , (2.30)

where the product kx is performed with the flat Minkowski metric and Y l(Sp2−d−1) are

scalar spherical harmonics which satisfy:

∇i∇i Y
l(Sp2−d−1) = −l(l + p2 − d − 2) Y l(Sp2−d−1) . (2.31)

If we redefine the variables as:

% =
ρ

L
, M̄2 = −R2γ1+2γ2 L2−2γ1−2γ2 k2 , (2.32)

the differential equation becomes:

∂% (%p2−d−1∂% ξ) +

[

M̄2 %p2−d−1

(1 + %2)γ1+γ2
− l(l + p2 − d − 2)%p2−d−3

]

ξ = 0 . (2.33)

In order to study the solutions of eq. (2.33), let us change variables in such a way that

this equation can be written as a Schrödinger equation:

∂2
y ψ − V (y)ψ = 0 , (2.34)

where V is some potential. The change of variables needed to convert eq. (2.33) into (2.34)

is:

ey = % , ψ = %
p2−d−2

2 ξ . (2.35)

Notice that in this change of variables % → ∞ corresponds to y → ∞, while the point % = 0

is mapped into y = −∞. Moreover, the resulting potential V (y) takes the form:

V (y) =

(

l − 1 +
p2 − d

2

)2

− M̄2 e2y

(e2y + 1)γ1+γ2
. (2.36)

In figure 3 we have plotted the function V (y). It is interesting to notice that, in these

new variables, the problem of finding the mass spectrum can be rephrased as that of finding

the values of M̄ such that a zero-energy level for the potential (2.36) exists. Notice that

the classically allowed region in the Schrödinger equation (2.34) corresponds to the values

– 10 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
7

V

y

Figure 3: The Schrödinger potential V (y) of eq. (2.36).

of y such that V (y) ≤ 0. We would have a discrete spectrum if this region is of finite size

or, equivalently, if the points y = ±∞ are not allowed classically. As, when γ1 + γ2 > 1,

one has:

lim
y→±∞

V (y) =

(

l − 1 +
p2 − d

2

)2

, (2.37)

we will have a discrete spectrum for all values of l ∈ Z+ if p2−d > 2. Notice that p2−d ≥ 2

and when p2 − d = 2 and l = 0 the turning points of the potential V (y) are at y = ±∞.

Moreover, V (y) has a unique minimum at a value of y given by:

e2y0 =
1

γ1 + γ2 − 1
. (2.38)

2.3 The exactly solvable case

When γ1 + γ2 = 2, the differential equation for the fluctuation can be solved exactly in

terms of a hypergeometric function (see appendix A). To prove this statement, let us

change variables in eq. (2.33) as follows:

z = −%2 . (2.39)

One can check that eq. (2.33) for γ1 + γ2 = 2 is converted into:

z(1−z)
∂2ξ

∂z2
+

p2 − d

2
(1−z)

∂ξ

∂z
+

[

l(l + p2 − d − 2)

4
(1−z−1)− M̄2

4
(1−z)−1

]

ξ = 0 , (2.40)

which can be reduced to the hypergeometric differential equation. Indeed, let us define λ

as:

λ ≡ −1 +
√

1 + M̄2

2
. (2.41)

Notice that eq. (2.41) can be easily inverted, namely:

M̄2 = 4λ(λ + 1) . (2.42)
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Then, in terms of the original variable %, the solution of eq. (2.40) that is regular when

% → 0 is:

ξ(%) = %l (%2 + 1)−λ F

(

−λ,−λ + l − 1 +
p2 − d

2
; l +

p2 − d

2
;−%2

)

. (2.43)

We also want that ξ vanishes when % → ∞. A way to ensure this is by imposing that

−λ + l − 1 +
p2 − d

2
= −n , n = 0, 1, 2, . . . . (2.44)

When this condition is satisfied the hypergeometric function behaves as (%2)n when % → ∞
and ξ ∼ %−(l+p2−d−2) in this limit. Notice that when p2 − d = 2 the l = 0 mode does not

vanish at large %, in agreement with our general analysis based on the potential (2.36). By

using the condition (2.44) in eq. (2.42), one gets:

M̄2 = 4

(

n + l − 1 +
p2 − d

2

)(

n + l +
p2 − d

2

)

. (2.45)

Since in this case M̄2 = −R4L−2k2, one gets the following spectrum of possible values of

k2 = −M2:

M2 =
4L2

R4

(

n + l +
p2 − d − 2

2

)(

n + l +
p2 − d

2

)

. (2.46)

Let us look in detail which intersections satisfy the condition γ1 + γ2 = 2, needed to

reduce the fluctuation equation to the hypergeometric one. From the list of intersections

worked out in subsection 2.1, it is clear that this exactly solvable cases can only occur

if the background is a Dp-brane. Actually, in this case one must have γ1 = γ2 = 1 (see

eq. (2.14)), which only happens if p = 3. Thus, the list of exactly solvable intersections

reduces to the following cases:

(3|D3 ⊥ D7) , (2|D3 ⊥ D5) , (1|D3 ⊥ D3) . (2.47)

Notice that, for the three cases in (2.47), p2 = 2d + 1 for d = 3, 2, 1. Therefore, if dx2
1,d

denotes the line element for the flat Minkowski space in d + 1 dimensions, one can write

the induced metric (2.8) as:

ds2
I =

ρ2 + L2

R2
dx2

1,d +
R2

ρ2 + L2
dρ2 + R2 ρ2

ρ2 + L2
dΩ2

d . (2.48)

Moreover, by using the relation between p2 and d, one can rewrite the mass spectra (2.46)

of scalar fluctuations for the intersections (2.47) as:

MS =
2L

R2

√

(

n + l +
d − 1

2

)(

n + l +
d + 1

2

)

. (2.49)

In the three cases in (2.47) the background geometry is AdS5 × S5. Moreover, one

can see from (2.48) that the induced metric reduces in the UV limit ρ → ∞ to that of a

product space of the form AdSd+2 × Sd. Indeed, the (3|D3 ⊥ D7) intersection is the case
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extensively studied in ref. [7] and corresponds in the UV to an AdS5 × S3 ⊂ AdS5 × S5

embedding. In this case the D7-brane is a flavor brane for the N = 4 gauge theory. The

(2|D3 ⊥ D5) intersection represents in the UV an AdS4 × S2 defect in AdS5 × S5. In

the conformal limit L = 0 the corresponding defect CFT has been studied in detail in

ref. [21] where, in particular, the fluctuation/operator dictionary was found. In section 3

we will extend these results to the case in which the brane separation L is different from

zero and we will be able to find analytical expressions for the complete set of fluctuations.

The (1|D3 ⊥ D3) intersection corresponds in the UV to an AdS3 ×S1 defect in AdS5 ×S5

which is of codimension two in the gauge theory directions. The fluctuation spectra and the

corresponding field theory dual for L = 0 have been analyzed in ref. [24]. In section 4 we will

integrate analytically the differential equations for all the fluctuations of this (1|D3 ⊥ D3)

intersection when the D3-brane separation L is non-vanishing.

The % → ∞ limit is simply the high energy regime of the theory, where the mass of the

quarks can be ignored and the theory becomes conformal. Therefore, the % → ∞ behaviour

of the fluctuations should provide us information about the the conformal dimension ∆ of

the corresponding dual operators. Indeed, in the context of the AdS/CFT correspondence

in d + 1 dimensions, it is well known that, if the fields are canonically normalized, the

normalizable modes behave at infinity as ρ−∆, whereas the non-normalizable ones should

behave as ρ∆−d−1. In the case in which the modes are not canonically normalized the

behaviours of both types of modes are of the form ρ−∆+γ and ρ∆−d−1+γ for some γ. Clearly

we can obtain the conformal dimension from the difference between the exponents. Let us

apply this method to fluctuations which are given in terms of hypergeometric functions, as

in eq. (2.43). Since for large % the hypergeometric function behaves as:

F (a1, a2; b;−%2) ≈ c1 %−2a1 + c2 %−2a2 , (% → ∞) , (2.50)

one immediately gets:

∆ =
d + 1

2
+ a2 − a1 . (2.51)

For the scalar fluctuations studied above, one has from the solution (2.43) that a1 = −λ

and a2 = −λ + l + d−1
2 . By applying eq. (2.51) to this case, we get the following value for

the dimension of the operator associated to the scalar fluctuations:

∆S = l + d . (2.52)

Notice that the quantization condition (2.44) selects precisely the normalizable modes,

which behave at large % as ξ ∼ %−∆S+1. Notice also that the modes that become constant

at ρ → ∞ correspond to operators with ∆S = 1 and, therefore, they should not be

discarded. A glance at eq. (2.52) reveals that this situation only occurs when d = 1 (i.e.

for the AdS3 × S1 defect) and l = 0. This case will be studied in detail in section 4.

As the hypergeometric function F (a1, a2; b;−%2) is symmetric under a1 ↔ a2, it is

clear that the roles of a1 and a2 can also be exchanged in (2.51). If the resulting conformal

dimension lies in the unitarity range ∆ > 0 (or ∆ ≥ 0 if d = 1) we have a second branch

of fluctuations. For the case at hand ∆ = 1 − l and the unitarity condition requires
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generically that l = 0. This second branch is selected by imposing to the hypergeometric

function (2.43) the truncation condition λ = n for n = 1, 2, . . .. The resulting spectrum

is just M̄2 = 4n(n + 1), n = 1, 2, . . .. In the rest of this paper this second branch of the

fluctuations of the transverse scalars will not be considered further.

2.4 WKB quantization

The mapping to the Schrödinger equation we have performed in section 2.2 allows us to

apply the semiclassical WKB approximation to compute the fluctuation spectrum. The

WKB method has been very successful [29, 30] in the calculation of the glueball spectrum in

the context of the gauge/gravity correspondence [31]. The starting point in this calculation

is the WKB quantization rule:

(

n +
1

2

)

π =

∫ y2

y1

dy
√

−V (y) , n ≥ 0 , (2.53)

where n ∈ Z and y1, y2 are the turning points of the potential (V (y1) = V (y2) = 0). To

evaluate the right-hand side of (2.53) we expand it as a power series in 1/M̄ and keep the

leading and subleading terms of this expansion. We obtain in this way the expression of M̄

as a function of the principal quantum number n which is, in principle, reliable for large

n, although in some cases it happens to give the exact result. Let us recall the outcome of

this analysis for a general case, following [30]. With this purpose, let us come back to the

original variable % and suppose that we have a differential equation of the type:

∂% (g(%) ∂% φ ) + (M̄2 q(%) + p(%) ) φ = 0 , (2.54)

where the functions g, q and p behave near % ≈ 0,∞ as:

g ≈ g1%
s1 , q ≈ q1%

s2 , p ≈ p1%
s3 , as % → 0 ,

g ≈ g2%
r1 , q ≈ q2%

r2 , p ≈ p2%
r3 , as % → ∞ . (2.55)

The consistency of the WKB approximation requires that s2 − s1 + 2 and r1 − r2 − 2 be

stricly positive numbers, whereas s3 − s1 + 2 and r1 − r3 − 2 can be either positive or

zero [30]. In our case (eq. (2.33)), the functions g(%), q(%) and p(%) are:

g(%) = %p2−d−1 , q(%) =
%p2−d−1

(1 + %2)γ1+γ2
, p(%) = −l(l + p2 − d − 2)%p2−d−3 . (2.56)

From the behavior at ρ ≈ 0 of the functions written above, we obtain:

g1 = 1 , s1 = p2 − d − 1 ,

q1 = 1 , s2 = p2 − d − 1 ,

p1 = −l(l + p2 − d − 2) , s3 = p2 − d − 3 . (2.57)

Notice that s2 − s1 + 2 = 2 and s3 − s1 + 2 = 0 and, thus, we are within the range of

applicability of the WKB approximation. Moreover, from the behavior at ρ → ∞ of the
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functions written in (2.56) we obtain:

g2 = 1 , r1 = p2 − d − 1 ,

q2 = 1 , r2 = p2 − d − 1 − 2γ1 − 2γ2 ,

p2 = −l(l + p2 − d − 2) , r3 = p2 − d − 3 . (2.58)

Now r1 − r2 − 2 = 2(γ1 + γ2 − 1) and r1 − r3 − 2 = 0 and we are also in the range of

applicability of the WKB method if γ1 + γ2 > 1. Coming back to the general case, let us

define [30] the quantities:

α1 = s2 − s1 + 2 , β1 = r1 − r2 − 2 , (2.59)

and (as s3 − s1 + 2 = r1 − r3 − 2 = 0, see [30]):

α2 =

√

(s1 − 1)2 − 4
p1

g1
, β2 =

√

(r1 − 1)2 − 4
p2

g2
. (2.60)

Then, the mass levels for large quantum number n can be written in terms of α1,2 and β1,2

as [30]:

M̄2
WKB =

π2

ζ2
(n + 1)

(

n +
α2

α1
+

β2

β1

)

, (2.61)

where ζ is the following integral:

ζ =

∫ ∞

0
d%

√

q(%)

g(%)
. (2.62)

In our case α1,2 and β1,2 are easily obtained from the coefficients written in (2.57) and (2.58),

namely:

α1 = 2 , β1 = 2(γ1 + γ2 − 1) , α2 = β2 = 2l + p2 − d − 2 . (2.63)

Moreover, the integral ζ for our system is given by:

ζ =

∫ ∞

0

d%

(1 + %2)
γ1+γ2

2

=

√
π

2

Γ
(

γ1+γ2−1
2

)

Γ
(

γ1+γ2

2

) , (2.64)

and we get the following WKB formula for the masses:

M̄WKB
S = 2

√
π

Γ
(

γ1+γ2

2

)

Γ
(

γ1+γ2−1
2

)

√

(n + 1)

(

n +
γ1 + γ2

γ1 + γ2 − 1

(

l − 1 +
p2 − d

2

)

)

. (2.65)

2.5 Numerical computation

The formula (2.65) for the masses can be checked numerically by means of the shooting

technique. Notice that the behaviour for small % of the fluctuation ξ (needed when this
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technique is applied) can be easily obtained. Indeed, let us try to find a solution of eq. (2.33)

of the form:

ξ ∼ %γ , (2.66)

and let us neglect the term containing M̄2 of eq. (2.33). It is immediate to see that γ

satisfies the equation:

γ2 + (p2 − d − 2)γ − l(l + p2 − d − 2) = 0 , (2.67)

whose roots are:

γ = l,−(l + p2 − d − 2) . (2.68)

Clearly, the solution regular at % = 0 should correspond to the root γ = l. Then, we

conclude that near % = 0 one has:

ξ ∼ %l , (% ≈ 0) . (2.69)

In order to get the mass levels in the numerical calculation we have to match the % ≈ 0

behaviour (2.69) with the behaviour for large %. The latter can be easily obtained by using

the mapping written in (2.35) to the Schrödinger equation (2.34). Indeed, for % → ∞, or

equivalently for y → ∞, the potential V (y) becomes asymptotically constant and the wave

equation (2.34) can be trivially integrated. Let us call V∗ ≡ limy→∞ V (y), with V∗ > 0.

Then, the solutions of (2.34) are of the form ψ ∼ e±
√

V∗y which, in terms of the original

variable % are simply ψ ∼ %±
√

V∗ . The actual value of V∗ is given in eq. (2.37). Taking into

account the relation (2.35) between ψ and ξ, we get that ξ ∼ %γ for % → ∞, where γ are

exactly the two values written in eq. (2.68). The so-called Sl modes are characterized by

the following UV behaviour:

ξ ∼ %−(l+p2−d−2) , (% → ∞) . (2.70)

In the shooting technique one solves the differential equation for the fluctuations by im-

posing the behaviour (2.69) at % ≈ 0 and then one scans the values of M̄ until the UV

behaviour (2.70) is fine tuned. This occurs only for a discrete set of values of M̄ , which

determines the mass spectrum we are looking for. The numerical values obtained in the

different intersections and their comparison with the WKB mass formula (2.65) are studied

in the appendices.

3. Fluctuations of the D3-D5 system

In this section we study in detail the complete set of fluctuations corresponding to the

(2|D3 ⊥ D5) intersection. The dynamics of the D5-brane probe in the AdS5 × S5 back-

ground is governed by the Dirac-Born-Infeld action, which in this case reduces to

S = −
∫

d6ξ
√

− det(g + F ) +

∫

d6ξ P [C(4) ] ∧ F , (3.1)

where g is the induced metric on the worldvolume, P [ · · ·] denotes the pullback of the form

inside the brackets and, for convenience, we are taking the D5-brane tension equal to one.
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In (3.1) F is the two-form corresponding to the worldvolume field strength, whose one-form

potential will be denoted by A (F = dA).

Let us now find the action for the complete set of quadratic fluctuations around the

static configuration in which the two branes are at a distance L. Recall that in this

embedding the worldvolume metric in the UV is AdS4 × S2. As in section 2, let us denote

by χ the scalars transverse to both types of branes and let us assume that the probe is

extended along x1 and x2. We will call simply X to the coordinate x3. By expanding up

to second order the action (3.1), one gets the following lagrangian for the fluctuations:

L = −ρ2
√

g̃

[

1

2

R2

ρ2 + L2
Gab∂aχ∂bχ +

1

2

ρ2 + L2

R2
Gab∂aX∂bX +

1

4
FabF

ab

]

−

− 2
ρ

R4
(ρ2 + L2)XεijFij , (3.2)

where i, j are indices of the two-sphere of the worldvolume, εij = ±1 and Gab is the induced

metric for the static configuration, i.e. the metric displayed in eq. (2.48) for d = 2.

The equation of motion of the scalar χ is just (2.28) for p2 = 5, d = 2 and γ2 = 1. As

shown in subsection 2.3 this equation can be solved exactly in terms of the hypergeometric

function (2.43). Upon imposing the quantization condition (2.44) we obtain a tower of

normalizable modes, which we will denote by Sl, given by:

ξS(%) = %l (%2 + 1)−n−l− 1

2 F

(

−n − l − 1

2
,−n; l +

3

2
;−%2

)

, (l, n ≥ 0) . (3.3)

Recall from (2.49) and (2.52) that the associated mass MS(n, l) and conformal dimension

∆S for these scalar modes are given by:

MS(n, l) =
2L

R2

√

(

n + l +
1

2

)(

n + l +
3

2

)

, ∆S = l + 2 . (3.4)

Notice that the value found here for ∆S is in agreement with the result of ref. [21].

As shown in (3.2), the scalar X is coupled to the components Fij of the gauge

field strength along the two-sphere. The equation of motion of X derived from the la-

grangian (3.2) is:

R2 ∂a

[

ρ2
√

g̃ (ρ2 + L2)Gab∂bX
]

− 2ρ (ρ2 + L2) εijFij = 0 . (3.5)

Moreover, the equation of motion of the gauge field is:

R4 ∂a

[

ρ2
√

g̃ F ab
]

− 4ρ (ρ2 + L2) εbj ∂jX = 0 , (3.6)

where εbj is zero unless b is an index along the two-sphere.

Let us now see how the equations of motion (3.5) and (3.6) can be decoupled and,

subsequently, integrated in analytic form. With this purpose in mind, let us see how one

can obtain vector spherical harmonics for the two-sphere from the scalar harmonics Y l.
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Clearly, from a scalar harmonic in S2 we can can construct a vector by simply taking the

derivative with respect to the coordinates of the two-sphere, namely:

Y l
i (S2) ≡ ∇i Y

l(S2) . (3.7)

One can check from (2.31) that these functions satisfy:

∇i Y l
i =

1√
g̃

∂i

[

√

g̃ g̃ij Y l
j

]

= −l(l + 1)Y l ,

εij ∂i Y
l
j = 0 . (3.8)

Alternatively, we can take the Hogde dual in the sphere and define a new vector harmonic

function Ŷ l
i (S2) as:

Ŷ l
i (S2) ≡ 1√

g̃
g̃ij εjk ∇k Y l(S2) . (3.9)

The Ŷ l
i vector harmonics satisfy:

∇i Ŷ l
i = 0 ,

εij ∂i Ŷ
l
j = l(l + 1)

√

g̃ Y l . (3.10)

Let us analyze the different types of modes, in analogy with the D3-D7 case in [7].

3.1 Type I modes

We are going to study first the modes which involve the scalar field X and the components

Ai of the gauge field along the two-sphere directions. Generically, the equations of motion

couple Ai to the other gauge field components Aµ and Aρ. However, due to the property

∇i Ŷ l
i = 0 (see eq. (3.10)), if Ai is proportional to Ŷ l

i it does not mix with other components

of the gauge field, although it mixes with the scalar X. Accordingly, let us take the ansatz:

Aµ = 0 , Aρ = 0 , Ai = φ(x, ρ) Ŷ l
i (S2) , (3.11)

while we represent X as:

X = Λ(x, ρ)Y l(S2) . (3.12)

Taking into account that
1

2
εij Fij = l(l + 1)

√

g̃ φ Y l , (3.13)

one can prove that the equation of motion of X (eq. (3.5)) becomes:

R4 ρ2 ∂µ∂µΛ + ∂ρ

[

ρ2 (ρ2 + L2)2 ∂ρ Λ
]

−
−l(l + 1) (ρ2 + L2)2 Λ − 4l(l + 1) ρ (ρ2 + L2)φ = 0 . (3.14)

It can be easily verified that the equations for Aµ and Aρ are automatically satisfied as a

consequence of the relation ∇i Ŷ l
i = 0. Moreover, for l 6= 0 the equation of motion (3.6)

for the gauge field components along S2 reduces to:

R4 ∂µ∂µφ + ∂ρ

[

(ρ2 + L2)2 ∂ρ φ
]

− l(l + 1)
(ρ2 + L2)2

ρ2
φ − 4ρ (ρ2 + L2)Λ = 0 . (3.15)
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In order to decouple this system of equations, let us follow closely the steps of ref. [21].

First, we redefine the scalar field Λ as follows:

V = ρΛ . (3.16)

The system of equations which results after this redefinition can be decoupled by simply

taking suitable linear combinations of the unknown functions V and φ. This decoupling

procedure was used in ref. [21] for the conformal case L = 0 and, remarkably, it also works

for the case in which the brane separation does not vanish. In appendix B we will apply

this method to decouple the fluctuations of the type written in eqs. (3.11) and (3.12) for

the more general (p − 1|Dp ⊥ D(p + 2)) intersection. Here we just need the decoupled

functions, which are:

Z+ = V + lφ ,

Z− = V − (l + 1)φ . (3.17)

It is interesting at this point to notice that the Z− modes only exist for l ≥ 1 while the

Z+ modes make sense for l ≥ 0. Indeed, the vector harmonic Ŷ l
i vanishes for l = 0, since

it is the derivative of a constant function (see eq. (3.7)). Then, it follows from (3.11) that

the vector field vanishes for these l = 0 modes and, as a result, the l = 0 mode of the

scalar field is uncoupled. It is clear from (3.17) that this l = 0 mode of the field X is just

Z+ for vanishing l. As we have just mentioned, for l > 0 the equations for Z+ and Z−

are decoupled. These equations can be obtained by substituting the definition (3.17) into

eqs. (3.14) and (3.15). In order to get the corresponding spectra, let us adopt a plane wave

ansatz for Z±, namely:

Z± = eikx ξ±(ρ) . (3.18)

Moreover, let us define the reduced variables % and M̄ as in eq. (2.32), namely % = ρ/L and

M̄ = −R4L−2k2. Furthermore, we define λ as in eq. (2.41). We will consider separately

the Z+ and Z− equations.

3.1.1 Z+ spectra

By combining appropriately eqs. (3.14) and (3.15) one can show that the equation for ξ+

is indeed decoupled and given by:

1

1 + %2
∂%

[

(1 + %2)2 ∂% ξ+
]

+

[

M̄2

1 + %2
− (l + 1)

(

l + 4 +
l

%2

)

]

ξ+ = 0 . (3.19)

Remarkably, eq. (3.19) can be analytically solved in terms of a hypergeometric function.

Actually, by using the change of variables of appendix A, one can show that the solution

of (3.19) which is regular at % = 0 is:

ξ+(%) = %1+l (1 + %2)−1−λ F

(

−λ − 1, l +
3

2
− λ; l +

3

2
;−%2

)

. (3.20)
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By using eq. (2.50) one can show that, for large values of the % coordinate, the function ξ+

written in (3.20) behaves as:

ξ+(%) ∼ c1%
l+1 + c2%

−l−4 , (% → ∞) . (3.21)

Clearly, the only normalizable solutions are those for which c1 = 0. This regularity condi-

tion at % = ∞ can be enforced by means of the following quantization condition:

l +
3

2
− λ = −n , n = 0, 1, 2, . . . . (3.22)

The ξ+ fluctuations for which (3.22) holds will be referred to as I l
+ modes. Their analytical

expression is given by:

ξI+(%) = %1+l (%2 + 1)−n−l− 5

2 F

(

−n − l − 5

2
,−n; l +

3

2
;−%2

)

, (l, n ≥ 0) , (3.23)

and the corresponding energy levels are:

MI+(n, l) =
2L

R2

√

(

n + l +
3

2

)(

n + l +
5

2

)

. (3.24)

By using the general expression (2.51) one reaches the conclusion that the conformal di-

mensions of the operators dual to the I l
+ modes are:

∆I+ = l + 4 , (3.25)

which agrees with the values found in ref. [21].

3.1.2 Z− spectra

The equation for ξ− can be shown to be:

1

1 + %2
∂%

[

(1 + %2)2 ∂% ξ−
]

+

[

M̄2

1 + %2
− l

(

l − 3 +
l + 1

%2

)

]

ξ− = 0 , (3.26)

which again can be solved in terms of the hypergeometric function. The solution regular

at % = 0 is:

ξ−(%) = %1+l (%2 + 1)−1−λ F

(

− λ + 1, l − 1

2
− λ; l +

3

2
;−%2

)

. (3.27)

It is easy to verify by using eq. (2.50) that ξ−(%) has two possible behaviours at % → ∞,

namely %−l, %l−3, where l ≥ 1. The former corresponds to a normalizable mode with

conformal dimension ∆ = l, while the latter is associated to operators with ∆ = 3 − l.

Notice that the existence of these two branches is in agreement with the results of ref. [21].

Let us consider first the branch with ∆ = l, which we will refer to as I l
− fluctuations.

One can select these fluctuations by imposing the following quantization condition:

l − 1

2
− λ = −n , n = 0, 1, 2, . . . . (3.28)
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The corresponding functions ξ−(%) are:

ξI−(%) = %1+l (%2 +1)−n−l− 1

2 F

(

−n− l+
3

2
,−n; l+

3

2
;−%2

)

, (l ≥ 1, n ≥ 0) , (3.29)

and the mass spectrum and conformal dimension are:

MI−(n, l) =
2L

R2

√

(

n + l − 1

2

)(

n + l +
1

2

)

, ∆I− = l . (3.30)

One can check that, indeed, the solution (3.29) behaves as %−l at % → ∞ and, therefore,

the associated operator in the conformal limit has ∆ = l as it should.

One can select the branch with ∆ = 3 − l by requiring that:

−λ + 1 = −n , n = 0, 1, 2, . . . . (3.31)

The corresponding functions are:

ξĨ−
(%) = %1+l (%2 + 1)−2−n F

(

−n, l − n − 3

2
; l +

3

2
;−%2

)

. (3.32)

Notice that the condition ∆ = 3− l > 0 is only fulfilled for two possible values of l, namely

l = 1, 2. We will refer to this branch of solutions as Ĩ l
− fluctuations. Their mass spectrum

is independent of l, as follows from eq. (3.31). Thus, one has:

MĨ−
(n, l) =

2L

R2

√

(

n + 1

)(

n + 2

)

, ∆Ĩ−
= 3 − l , (l = 1, 2) . (3.33)

3.2 Type II modes

Let us consider a configuration with X = 0 and with the following ansatz for the gauge

fields:

Aµ = φµ(x, ρ)Y l(S2) , Aρ = 0 , Ai = 0 , (3.34)

with

∂µφµ = 0 . (3.35)

Due to this last condition one can check that the equations for Aρ and Ai are satisfied,

while the equation for Aµ yields:

∂ρ(ρ
2∂ρφν) + R4 ρ2

(ρ2 + L2)2
∂µ ∂µφν − l(l + 1)φν = 0 . (3.36)

Expanding in a plane wave basis we get exactly the same equation as in the scalar fluctu-

ations. Actually, let us represent φµ as:

φµ = ξµ eikx χ(ρ) , (3.37)

where kµ ξµ = 0. The equation for χ is:

1

%2
∂%

(

%2∂%χ
)

+

[

M̄2

(1 + %2)2
− l(l + 1)

%2

]

χ = 0 , (3.38)
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where we have already introduced the reduced quantities % and M̄ . This equation is

identical to the one corresponding to the transverse scalars. Thus, the spectra are the

same in both cases. These fluctuations correspond to an operator with conformal weight

∆II = l + 2, in agreement with ref. [21].

3.3 Type III modes

These modes have X = 0 and the following form for the gauge field:

Aµ = 0 , Aρ = φ(x, ρ)Y l(S2) , Ai = φ̃(x, ρ)Y l
i (S2) . (3.39)

Notice that for the gauge field potential written above the field strength components Fij

along the two-sphere vanish, which ensures that the equation of motion of X is satisfied

for X = 0. The non-vanishing components of the gauge field strenght are:

Fµi = ∂µ φ̃ Y l
i , Fµρ = ∂µ φY l , Fρi = (∂ρ φ̃ − φ)Y l

i . (3.40)

The equation for Aρ becomes:

R4 ρ2 ∂µ ∂µφ − l(l + 1) (ρ2 + L2)2 (φ − ∂ρφ̃) = 0 , (3.41)

while the equation for Ai is:

R4 ∂µ ∂µφ̃ + ∂ρ

[

(ρ2 + L2)2 (∂ρφ̃ − φ)
]

= 0 . (3.42)

Moreover, the equation for Aµ can be written as:

∂µ

[

l(l + 1)φ̃ − ∂ρ(ρ
2φ)

]

= 0 . (3.43)

Expanding φ and φ̃ in a plane wave basis we can get rid of the xµ derivative and we

can write the following relation between φ̃ and φ:

l(l + 1)φ̃ = ∂ρ(ρ
2φ) . (3.44)

For l 6= 0, one can use this relation to eliminate φ̃ in favor of φ. The equation of motion of

Aρ becomes:

∂2
ρ (ρ2 φ) − l(l + 1)φ +

R4 ρ2

(ρ2 + L2)2
∂µ ∂µφ = 0 , (3.45)

which, again, can be solved in terms of hypergeometric functions. The equation of motion

of Ai is just equivalent to the above equation. To solve this equation, let us write

φ(x, ρ) = eikx ζ(ρ) . (3.46)

Then, in terms of the reduced variable % the equation for ζ becomes

1

%2
∂2

%

(

%2ζ
)

+

[

M̄2

(1 + %2)2
− l(l + 1)

%2

]

ζ = 0 , (3.47)
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where M̄ is the same as for the type I modes. Eq. (3.47) can be solved in terms of the

hypergeometric function as:

ζ(%) = %l−1 (%2 + 1)−λ F

(

−λ, l +
1

2
− λ; l +

3

2
;−%2

)

. (3.48)

The quantization condition and the energy levels are just the same as for the transverse

scalars and the type II modes. At ρ → ∞, ζ ∼ ρ−l−2. These fluctuations correspond to a

field with conformal weight ∆III = l + 2, as predicted in [21].

3.4 Fluctuation/operator correspondence

Let us recall the array corresponding to the D3-D5 intersection:

1 2 3 4 5 6 7 8 9

D3 : × × ×
D5 : × × × × ×

(3.49)

Before adding the D5-brane we have a SO(6) R-symmetry which corresponds to the rotation

in the 456789 directions. The D5-brane breaks this SO(6) to SU(2)H × SU(2)V , where

the SU(2)H corresponds to rotations in the 456 directions (which are along the D5-brane

worldvolume) and the SU(2)V is generated by rotations in the 789 subspace (which are the

directions orthogonal to both types of branes).

Let us recall how the N = 4, d = 4 gauge multiplet decomposes under the N = 4,

d = 3 supersymmetry. As it is well-known, the N = 4 gauge multiplet in four dimensions

contains a vector Aµ (which has components along the four coordinates of the D3-brane

worldvolume), six real scalars Xi (corresponding to the directions orthogonal to the D3-

brane worldvolume) and four complex Weyl spinors λa. All these fields are in the adjoint

representation of the gauge group. The d = 4 vector field Aµ gives rise to a d = 3 gauge

field Ak and to a scalar field A3. Both types of fields are singlets with respect to the

SU(2)H × SU(2)V symmetry. Moreover, the adjoint scalars can be arranged in two sets as:

XH = (X4,X5,X6) , XV = (X7,X8,X9) . (3.50)

Clearly, XH transforms in the (3,1) representation of SU(2)H ×SU(2)V while XV does it in

the (1,3). Finally, the spinors transform in the (2,2) representation and will be denoted by

λim. In addition to the bulk fields, the 3-5 strings introduce a d = 3 complex hypermultiplet

in the fundamental representation of the gauge field, whose components will be denoted

by (qm, ψi). The bosonic components qm of this hypermultiplet transform in the (2,1)

representation, whereas the fermionic ones ψi are in the (1,2) of SU(2)H × SU(2)V . The

dimensions and quantum numbers of the different fields just discussed are summarized in

table 1.

Let us now determine the quantum numbers of the different fluctuations of the D3-D5

system. We will denote by Sl the scalar fluctuations and by I l
+ and I l

− the two types

of vector fluctuations of type I. The I l
− fluctuations which we will consider from now on

are those corresponding to the operator of dimension ∆ = l. Moreover, the modes of
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Field ∆ SU(2)H SU(2)V
Ak 1 0 0

A3 1 0 0

XH 1 1 0

XV 1 0 1

λim 3/2 1/2 1/2

qm 1/2 1/2 0

ψi 1 0 1/2

Table 1: Quantum numbers and dimensions of the fields of the D3-D5 intersection.

Mode ∆ SU(2)H SU(2)V

Sl l + 2 l ≥ 0 1

I l
+ l + 4 l ≥ 0 0

I l
− l l ≥ 1 0

V l l + 2 l ≥ 0 0

Table 2: Quantum numbers and dimensions of the modes of the D3-D5 intersection.

type II and III correspond to fluctuations of the vector gauge field in AdS4 and will be

denoted collectively by V l. In all cases, l corresponds to the quantum number of the

spherical harmonics in the 456 directions and, thus, it can be identified with the isospin

of the SU(2)H representation. Moreover, it is clear that the scalar modes are fluctuations

in the 789 directions and therefore are in the vector representation of SU(2)V , while the

other fluctuations are singlets under SU(2)V . With all this data and with the values of the

dimensions determined previously, we can fill the values displayed in table 2.

Let us now recall our results for the mass spectra. The mass of the scalar fluctuations

MS(n, l) is given in eq. (3.4). The masses of the other modes are given in terms of MS(n, l)

as:

MI+(n, l) = MS(n, l + 1) , MI−(n, l) = MS(n, l − 1) , MV (n, l) = MS(n, l) . (3.51)

Let us now match, following ref. [21], the fluctuation modes with composite operators

of the N = 4, d = 3 defect theory by looking at the dimensions and SU(2)H × SU(2)V
quantum numbers of these two types of objects. Let us consider first the fluctuation mode

with the lowest dimension, which according to our previous results is I1
−. This mode is a

triplet of SU(2)H and a singlet of SU(2)V and has ∆ = 1. There is only one operator with

these characteristics. Indeed, let us define the following operator:

CI ≡ q̄mσI
mn qn , (3.52)

where the σI are Pauli matrices. This operator has clearly the same dimension and

SU(2)H × SU(2)V quantum numbers as the mode I1
−. Therefore, we have the identifi-

cation [21]:

I1
− ∼ CI . (3.53)
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Moreover, by acting with the supersymmetry generators we can obtain the other operators

in the same multiplet as CI . The bosonic ones are [21]:

EA = ψ̄i σA
ij ψj + 2q̄mXAa

V T aqm ,

Jk
B = iq̄mDkqm − i(Dkqm)† qm + ψ̄i ρkψi , (3.54)

where the T a are the matrices of the gauge group and the ρk are Dirac matrices in d = 3.

Notice that these two operators have dimension ∆ = 2. Moreover, EA transforms in the

(1,3) representation of SU(2)H × SU(2)V , whereas Jk
B is a SU(2)H × SU(2)V singlet. It is

straightforward to find the modes that have these same quantum numbers and dimension.

Indeed, one gets that:

S0 ∼ EA , V 0 ∼ Jk
B . (3.55)

Notice that our mass spectrum is consistent with these identifications, since according

to eq. (3.51), the fluctuations I1
−, S0 and V 0 have all the same mass spectrum, namely

Ms(n, 0).

Let us next consider the modes corresponding to higher values of l. Following ref. [21]

we define the operator

CI0···Il

l ≡ C(I0 XI1
H · · ·XIl)

H , (3.56)

where the parentheses stand for the traceless symmetrization of the indices. The operator

Cl has dimension ∆ = l + 1, is a singlet of SU(2)V and transforms in the spin l + 1

representation of SU(2)H . It is thus a natural candidate to be identified with the mode

I l+1
− , namely:

I l+1
− ∼ CI0···Il

l . (3.57)

The mode I0
+ has been identified in [21] with a four-supercharge descendant of the second-

floor chiral primary CIJ
1 . Notice that our mass spectra supports this identification since

MI+(n, 0) = MI−(n, 2). Actually, our results are consistent with having the modes I l+1
− ,

Sl, V l and I l−1
+ in the same massive supermultiplet for l ≥ 1 and with the identification of

this supermultiplet with the one obtained from the chiral primary Cl, i.e.:

(I l+1
− , Sl, V l, I l−1

+ ) ∼ (Cl, . . .) , (l ≥ 1) . (3.58)

As a check notice that the four modes on the left-hand side of eq. (3.58) have the same

mass spectrum, namely MS(n, l). Moreover, ∆(Sl) = ∆(V l) = ∆(I l+1
− ) + 1 and ∆(I l−1

+ ) =

∆(I l+1
− ) + 2, which is in agreement with the fact that the supercharge has dimension 1/2.

4. Fluctuations of the D3-D3 system

Let us analyze in this section the modes of the (1|D3 ⊥ D3) intersection. In the probe

approximation we are considering the equations of motion of these fluctuation modes are

obtained from the Dirac-Born-Infeld action of a D3-brane in the AdS5 × S5 background.

This action is given by:

S = −
∫

d4ξ
√

− det(g + F ) +

∫

d4ξ P [C(4) ] . (4.1)
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We want to expand the action (4.1) around the static configuration in which the two

branes are separated a distance L. Recall from section 2 that the induced metric on

the worldvolume of the D3-brane probe of such a configuration is just the one written in

eq. (2.48) for d = 1, which reduces to AdS3 × S1 in the UV limit. As in section 2, let us

denote by χ the scalars transverse to both types of branes. In this case the defect created

by the probe has codimension two in the Minkowski directions of AdS5×S5. Let us assume

that the D3-brane probe is extended along the Minkowski coordinate x1 and let us define:

λ1 = x2 , λ2 = x3 . (4.2)

With these notations, the lagrangian for the quadratic fluctuations can be readily obtained

from (4.1):

L = −ρ

2

R2

ρ2 + L2
Gab∂aχ∂bχ − ρ

2

ρ2 + L2

R2
Gab∂aλi∂bλi −

ρ

4
FabF

ab +

+
(ρ2 + L2)2

R4
εij∂ρλi ∂ϕλj , (4.3)

where i, j = 1, 2 and Gab is the metric (2.48) for d = 1. The equation of motion of χ

derived from (4.3) is just the one studied in section 2, namely (2.28), for p2 = 3, d = 1 and

γ2 = 1. Separating variables as in (2.30) we arrive at an equation which can be analytically

solved in terms of hypergeometric functions. The corresponding solution has been written

in eq. (2.43). After imposing the truncation condition (2.44) we obtain the so-called Sl

modes, whose explicit expression is:

ξS(%) = %l (%2 + 1)−n−l F (−n − l,−n; l + 1;−%2) . (4.4)

Notice that in this case the harmonics are just exponentials of the type eilϕ, where ϕ is just

the angular coordinate of the S1 circle. Then, the quantum number l can take also negative

values. The modes written in (4.4) are those which are regular at ρ = 0 for non-negative

l. When l < 0 one can get regular modes at the origin by using the second solution of the

hypergeometric function. The result is just (4.4) with l changed by −l. However, since the

scalar field χ whose fluctuation we are analyzing is real, changing l by −l in eilϕ makes

no difference and we can restrict ourselves to the case l ≥ 0. The mass spectrum and

associated conformal dimensions of the fluctuations (4.4) are:

MS(n, l) =
2L

R2

√

(n + l)(n + l + 1) , ∆S = l + 1 , (4.5)

where n ≥ 0, except for the case l = 0 where n ≥ 1. Notice that for n = l = 0 the

function ξS(%) is just constant. Moreover, MS vanishes in this case and thus we can take

the solution χ to be also independent of the Minkowski coordinates. This constant zero

mode corresponds just to changing the value of the distance L and should not be considered

as a true fluctuation. Therefore, we shall understand that n ≥ 0 in (4.4) and (4.5), except

in the case l = 0 where n ≥ 1.
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4.1 Scalar fluctuations

Let us now study the fluctuations of the λi scalars. Notice that these fields are coupled

through the Wess-Zumino term in (4.3). Actually, the equations of motion for the λi’s

derived from (4.3) are:

R2 ∂a

[

ρ (ρ2 + L2)Gab∂bλi

]

− 4ρ (ρ2 + L2) εij∂ϕλj = 0 . (4.6)

To solve these equations let us introduce the reduced variables M̄2 = −R4L−2k2, % = ρ/L

and let us expand the λi’s in modes as:

λi = eikx e−ilϕ ξi(ρ) , i = 1, 2 . (4.7)

Then, the functions ξi(ρ) satisfy the coupled equations:

1

%(1 + %2)
∂%

[

% (1 + %2)2 ∂% ξi

]

+

[

M̄2

1 + %2
− l2

(

1 +
1

%2

)

]

ξi + 4il εijξj = 0 . (4.8)

In order to diagonalize this system of equations, let us define the following complex function:

w = ξ1 + i ξ2 , (4.9)

which satisfies the differential equation:

1

%(1 + %2)
∂%

[

% (1 + %2)2 ∂% w
]

+

[

M̄2

1 + %2
− l2

(

1 +
1

%2

)

]

w + 4l w = 0 . (4.10)

Equation (4.10) can be solved in terms of a hypergeometric function, namely:

w(1) = %l (1 + %2)−λ−1 F (−λ + 1, l − λ − 1; l + 1;−%2) , (4.11)

where λ is related to M̄ as in (2.41). Notice that w(1) is regular at l = 0 for l ≥ 0.

Actually, since l can be negative in this case one can also consider the second solution of

the hypergeometric equation, which is:

w(2) = %−l (1 + %2)−λ−1 F (−λ − 1,−λ − l + 1; 1 − l;−%2) . (4.12)

By applying eq. (2.51) to the present case, we obtain that the conformal dimension of a

fluctuation of the type (2.40) is just ∆ = l−1 or ∆ = 3−l. Actually, it is straightforward to

verify that the solutions of the differential equation (4.10) present two different behaviours

at % → ∞, namely %−l and %l−4. The first behaviour corresponds to an operator with

∆ = l − 1, while ∆ = 3− l is the dimension of an operator whose dual fluctuation behaves

as %l−4 for large %. In the following we will refer to the fluctuations with ∆ = l− 1 as W l
+,

while those with ∆ = 3 − l will be denoted by W l
−. These two branches 1 will be studied

separately in their unitarity range ∆ ≥ 0 by finding the truncations of the hypergeometric

series of w(1) and w(2) with the appropriate behaviour at large %.

1For l = 2 both UV behaviours coincide and there is no distinction between the two branches. In this

case there are solutions of the fluctuation equation which behave as %−2 log % for large %.
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4.1.1 W l
+ fluctuations

Let us consider the solution w(1) in eq. (4.11) with the following truncation condition:

l − λ − 1 = −n , n = 0, 1, 2, . . . . (4.13)

The resulting solution is:

w = %l (1 + %2)−l−n F (2 − l − n,−n; l + 1;−%2) . (4.14)

One can check easily that w ∼ %−l for large % if l = 1, n = 0 or l ≥ 2, n ≥ 0. Notice that

∆ = l − 1 in this case and the unitarity range is l ≥ 1. The mass spectrum becomes:

MW+
(n, l) =

2L

R2

√

(n + l − 1)(n + l) , ∆W+
= l − 1 , (l ≥ 1) . (4.15)

The l = 1 fluctuation is a special case. Indeed, in this case one has ∆ = 0 and, as n must

vanish, M is zero, i.e. we have a massless mode despite of the fact that we have introduced a

mass scale by separating the branes. As argued in ref. [24] this is related to the appearance

of the Higgs branch on the field theory side. Let us look closer at this l = 1, n = 0 mode.

In this case M = λ = 0 and the hypergeometric function is just equal to one. Thus:

w ∼ ρ

ρ2 + L2
, (4.16)

where we have reintroduced the constant L. In particular, for large ρ

w ≈ c

ρ
, (ρ → ∞) , (4.17)

where c is a constant. Let us consider the solution in which k = 0 (which certainly has

M = 0). This solution does not depend on the coordinates (t, x1). Let us introduce the ϕ

dependence and define the following two complex variables:

Λ ≡ λ1 + iλ2 = x2 + ix3 , Y = ρ eiϕ . (4.18)

Then the modes we are studying satisfy for large ρ:

ΛY ≈ c , (ρ → ∞) , (4.19)

which is just the holomorphic curve of the Higgs branch found in ref. [24] by looking at the

vanishing of the F-terms of the susy theory.

It is worth to stress here the difference between the l = 1 solution (4.16) and the

fluctuations (4.14) for l > 1. Indeed, in the latter case we get a full tower of solutions,

depending on the excitation number n, whereas for l = 1 we have only the single func-

tion (4.16). Moreover, the mass spectra (4.15) is simply related to the one corresponding to

the transverse scalar fluctuations Sl only for l > 1 (see section 4.3). One can regard (4.16)

as a non-trivial solution in which the D3-brane probe is deformed at no cost along the

directions of the worldvolume of the D3-brane of the background.

It is also interesting to point out that the differential equation (4.10) can be solved by

taking w = ρ−l and M = 0. This fact can be checked directly from eq. (4.10) or by taking
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λ → 0 in the solution (4.12). Notice, however that this solution is not well-behaved at

ρ → 0 for l ≥ 1, contrary to what happens to the function written in eq. (4.16). A second

solution with M = 0 can be obtained by putting λ = 0 in (4.11). This solution is regular

at ρ → 0. However, for l > 1 the hypergeometric function which results from taking λ = 0

in (4.11) contains logarithms for L 6= 0 and its interpretation in terms of a holomorphic

curve is unclear to us.

4.1.2 W l
− fluctuations

The allowed range of values of l for the fluctuations W l
− is l ≤ 3. We have found a discrete

tower of states only for l ≤ 1. As in the previous subsection, l = 1 is special. In this case

the solutions regular at % = 0 which decrease as %−3 for large % are:

w = % (1 + %2)−n−1 F (1 − n,−n; 2;−%2) , (l = 1) , (4.20)

where n ≥ 1. Indeed, this solution is just (4.14) for l = 1 and n ≥ 1. Moreover, for l ≤ 0

the solutions which behave as %l−4 for large % can be obtained by putting −λ− l+1 = −n,

with n ≥ 0, on the solution w(2) of eq. (4.12). One gets:

w = %−l (1 + %2)−2−n+l F (−2 − n + l,−n; 1 − l;−%2) , (l ≤ 0) . (4.21)

The mass spectrum for l ≤ 1 can be written as:

MW−
(n, l) =

2L

R2

√

(n + 1 − l)(n + 2 − l) , ∆W−
= 3 − l , (l ≤ 1) , (4.22)

where it should be understood that n ≥ 1 for l = 1 and n ≥ 0 otherwise.

4.2 Vector fluctuations

We will now study the fluctuations of the worldvolume gauge field. We will try to imitate

the discussion of section 3 for the D3-D5 system. Obviously, the analogue of the type I

modes does not exists for a one-dimensional sphere. Let us analyze the spectra of the other

two types of modes.

4.2.1 Type II modes

Let us consider the ansatz

Aµ = ξµ φ(ρ) eikx e−ilϕ , Aρ = 0 , Aϕ = 0 , (4.23)

with ξµ being a constant vector such that kµξµ = 0. In terms of the reduced variables %

and M̄ , the equation for φ(ρ) is:

∂%

[

% ∂%φ
]

+

[

%

(%2 + 1)2
M̄2 − l2

%

]

φ = 0 , (4.24)

which is the same as for the transverse scalars χ. Therefore, the mass spectrum of these

type II vector modes is just the same as in (4.5).
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4.2.2 Type III modes

We now adopt the ansatz:

Aµ = 0 , Aρ = φ(ρ) eikx e−ilϕ , Aϕ = φ̃(ρ) eikx e−ilϕ . (4.25)

The equation for Aρ is:

il∂ρφ̃ − l2φ + M2 R4 ρ2

(ρ2 + L2)2
φ = 0 , (4.26)

while the equation for Aϕ yields:

∂ρ

[

(ρ2 + L2)2

ρ

(

∂ρφ̃ + ilφ
)

]

+
M2 R4

ρ
φ̃ = 0 . (4.27)

Finally, the equation for Aµ gives a relation between φ and φ̃, namely:

ρ ∂ρ

(

ρφ
)

= ilφ̃ . (4.28)

For l 6= 0 we can use (4.28) to eliminate φ̃ in favor of φ. The remaining equations reduce

to the following equation for φ:

∂%

[

% ∂%(%φ)
]

+

[

%2

(%2 + 1)2
M̄2 − l2

]

φ = 0 , (4.29)

where we have already introduced the reduced variables % and M̄ . The solution of (4.29)

regular at ρ = 0 is:

φ = %l−1 (1 + %2)−λ F (−λ, l − λ; l + 1;−%2) , (4.30)

with λ being the quantity defined in (2.41). By imposing the quantization condition:

l − λ = −n , n = 0, 1, . . . , (4.31)

we get a tower of fluctuation modes which behaves as ρ−l−1 when ρ → ∞. The correspond-

ing mass levels and conformal dimensions are:

MV (n, l) =
2L

R2

√

(n + l)(n + l + 1) , ∆V = l + 1 , (4.32)

which again coincide with the results obtained for the scalar modes.

4.3 Fluctuation/operator correspondence

The array corresponding to the D3-D3 intersection is:

1 2 3 4 5 6 7 8 9

D3 : × × ×
D3′ : × × ×

(4.33)

where the D3′ is the probe brane. First of all, let us discuss the isometries of this configu-
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Field ∆ SO(4) U(1)23 U(1)45

q 1 (0, 0) 0 1

b, b̃ 0 (0, 0) −1/2 1/2

ψ+ 1/2 (1/2, 0) 0 0

ψ− 1/2 (0, 1/2) 0 0

Table 3: Quantum numbers and dimensions of the fields of the D3-D3 intersection.

ration. Clearly, the addition of the brane probe breaks the SO(6) symmetry corresponding

to rotations in the 456789 directions to SO(4)×U(1)45, where the SO(4) ≈ SU(2)× SU(2)

factor is generated by rotations in the 6789 subspace and the U(1)45 corresponds to rota-

tions in the plane spanned by coordinates 4 and 5. In addition we have an extra U(1)23
generated by the rotations in the 23 plane.

The field content of the defect theory can be obtained by reducing the N = 4, d = 4

gauge multiplet down to two dimensions and by adding the corresponding 3−3′ sector [24].

The resulting theory has (4, 4) supersymmetry in d = 2. In particular, two of the six d = 4

adjoint chiral scalar superfields give rise to a field Q whose lowest component (which we

will denote by q) describes the fluctuations of the D3 in the directions 4 and 5. This field q

is a singlet of SO(4) and U(1)23 and is charged under U(1)45. The strings stretched between

the D3 and the D3’ give rise to two chiral multiplets B and B̃ which are fundamental and

antifundamental with respect to the gauge group. The lowest components of B and B̃ are

two scalar fields b and b̃ which are singlets under SO(4) and are charged under U(1)23 and

U(1)45. Moreover, the fermionic components of B and B̃ can be arranged in two SU(2)

multiplets ψ+ and ψ− which are neutral with respect to the two U(1)’s and charged under

one of the two SU(2)’s of the decomposition SO(4) ≈ SU(2)× SU(2). The dimensions and

quantum numbers of the different fields just discussed are summarized in table 3.

In order to establish the fluctuation/operator dictionary in this case, let us determine

the quantum numbers of the different fluctuations. The fluctuations in the directions

6789 (which are transverse to both types of D3-branes) will be denoted by Sl. Clearly

they transform in the (1/2, 1/2) representation of SO(4) and are neutral under U(1)23.

Moreover, since the rotations of the 45 plane are just those along the one-sphere of the probe

worldvolume, the integer l is just the charge under U(1)45. The w coordinate parametrizes

the 23 plane. Let us denote by W l
+ and W l

− to the two branches of w fluctuations. The W l
±’s

are SO(4) singlets and are charged under both U(1)23 and U(1)45. As in the D3-D5 case,

the fluctuations of types II and III correspond, in the conformal limit, to the components of

a vector field in AdS3 and will be denoted by V l. They are singlets under SO(4) and U(1)23.

Table 4 is filled in with the dimensions and quantum numbers of the different fluctuations.

The mass spectrum MS(n, l) of the fluctuations Sl has been written in eq. (4.5). The

masses of the other modes can be written in terms of MS(n, l) as:

MW+
(n, l) = MS(n, l − 1) , (l ≥ 2),
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Mode ∆ SO(4) U(1)23 U(1)45

Sl l + 1 (1/2, 1/2) 0 l ≥ 0

W l
+ l − 1 (0, 0) −1 l ≥ 1

W l
− 3 − l (0, 0) −1 l ≤ 1

V l l + 1 (0, 0) 0 l ≥ 0

Table 4: Quantum numbers and dimensions of the modes of the D3-D3 intersection.

MW−
(n, l) = MS(n, 1 − l) , (l ≤ 1),

MV (n, l) = MS(n, l) , (l ≥ 0). (4.34)

Notice that the relation between MS and MW−
is consistent with the absence of the n = 0

mode in the S0 and W 1
− fluctuations.

In order to relate the different fluctuations to composite operators of the defect theory

let us define following ref. [24] the operator Bl for l ≥ 1 as:

Bl ≡ b̃ql−1 b . (4.35)

Notice that Bl has the same dimension and quantum numbers as the fluctuation W l
+.

Similarly, the operator Gl for l ≤ 1, defined as:

Gl ≡ D−b̃q†1−l D+b + D+b̃q†1−l D−b , (4.36)

where D± = D0 ± D1, has the right properties to be identified with the dual of the

fluctuations W l
−. Moreover, to define the operator dual to Sl we have to build a vector

of SO(4). The natural objects to build an operator of this sort are the spinor fields ψ±.

Indeed, such an operator can be written as:

Cµl ≡ σµ
ij (εikψ̄

+
k qlψ−

j + εjkψ̄
−
k qlψ−

i ) , (4.37)

where l ≥ 0 and µ is a SO(4) index. Therefore, according to the proposal of ref. [24], we

have

Sl ∼ Cµl , W l
+ ∼ Bl , W l

− ∼ Gl . (4.38)

As argued in ref. [24], the fluctuations W l
+ for l = 1 are dual to the field B1 = b̃b, which

parametrizes the classical Higgs branch of the theory, whereas for higher values of l these

fluctuations correspond to other holomorphic curves. Moreover, the field Cµl is a BPS

primary and G1−l is a two supercharge descendant of this primary. Notice that this is

consistent with our relation (4.34) between the masses of the Sl and W l
− fluctuations.

Lastly, the fluctuations V l are dual to two-dimensional vector currents. The dual operator

at the bottom of the Kaluza-Klein tower is a global U(1) current JM
B :

V 0 ∼ JM
B . (4.39)
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The expression of JM
B has been given in ref. [24], namely:

JM
B ≡ ψα

i ρM
αβ ψβ

i + ib̄
↔
D Mb + ib̃

↔
D M ¯̃

b , (M = 0, 1) , (4.40)

where α, β = +,− and ρM are Dirac matrices in two dimensions.

5. Concluding remarks

In this paper we have studied the fluctuation spectra of brane probes in the near-horizon

background created by a stack of other branes. In the context of the generalization of the

gauge/gravity correspondence proposed in refs. [4, 5] these fluctuations are dual to open

strings stretching between the two types of branes of the intersection and can be identified,

on the field theory side of the correspondence, with composite operators made up from

hypermultiplets in the fundamental representation of the gauge group. We have mainly

studied the cases of D5- and D3-brane probes moving in the AdS5 × S5 geometry. In

these two cases, if the brane reaches the origin of the holographic coordinate, it wraps an

AdSd+2 × Sd (d = 2, 1) submanifold of the AdS5 × S5 background and the corresponding

field theory duals are defect conformal field theories with a fundamental hypermultiplet

localized at the defect. The spectra of conformal dimensions and the precise mapping

between probe fluctuations and operators of the dual defect theory for the D3-D5 and

D3-D3 intersections were obtained in refs. [21] and [24] respectively.

By allowing a finite separation between the probe and the origin of the holographic

direction we introduce an explicit mass scale in the problem, which is related to the mass

of the hypermultiplet. The system is no longer conformal and develops a mass gap. By

studying the fluctuations of the probes we have obtained the mass spectrum of the corre-

sponding open string degrees of freedom. Remarkably, for the D3-D5 and D3-D3 systems

the full set of differential equations for the fluctuations can be solved in terms of the hy-

pergeometric function and the corresponding mass spectra can be obtained analytically.

These mass spectra display some degeneracies which are consistent with the structure of

the supermultiplets found in refs. [21, 24] for the corresponding dual operators.

In the appendices we have also studied the case of supersymmetric D-brane probes

in the background of a Dp-brane for p 6= 3. In these cases the fluctuation equations can

also be decoupled although one needs to use numerical methods or WKB estimates in

order to get the mass spectra. The fluctuation/operator dictionary for these intersections

has not been worked out in detail in the literature. However, we have obtained relations

between the masses of the different modes which closely resemble the ones found for the

AdS5 ×S5 background. Moreover, one has to keep in mind [1] that, in order to trust these

supergravity solutions, both the curvature in string units and the dilaton must be small.

This fact introduces restrictions in the range of the holographic coordinate for which the

correspondence between the supergravity and gauge theory descriptions is valid [32]. It is

interesting to point out that in some cases we can avoid that our fluctuations enter the

“bad” region by selecting appropriately the value of the distance L.

This paper is a contribution to the program which aims at the extension of the

gauge/gravity correspondence to the case in which the field theory dual contains mat-
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ter in the fundamental representation. This program is still in progress and at the present

time it has some unsolved problems, which are also reflected in our results. Let us comment

on some of them. First of all, notice that all mass spectra we have found grow linearly

with the excitation number n for large n. This behaviour is common to all the cases in

which the masses are extracted from the analysis of the fluctuations of D-branes, both in

non-confining and confining backgrounds. This same type of spectrum is obtained in the

effective holography models [33]. It has been argued in ref. [34] that the spectrum of highly

excited mesons in confining gauge theories should be a linear function of
√

n for large n.

Even though the arguments in favor of the M ∼ √
n behaviour do not apply to the systems

studied here, this discrepancy could lead us to think that the approach based on the small

fluctuations of brane probes needs to be corrected. However, the present status of this ques-

tion is unclear and this should be considered as an open problem. Notice that, for large spin,

the open string can be treated semiclassically. For the D3-D7 intersection this analysis was

performed in ref. [7], while open spinning strings for the defect conformal field theory were

studied in refs. [35] in connection with their relation with integrable spin chains [36, 37].

Another criticism that one could make to the approach followed here is the fact that

we have employed the probe approximation and we have neglected the backreaction of

the branes on the geometry. Indeed, in some cases, one can construct a supergravity

background representing the localized intersection [38]. However, these backgrounds are

rather complicated and it is not easy to extract information about the gauge theory dual.

Maybe, in order to go beyond the probe approximation, it would be more fruitful to follow

the approach recently proposed in [39] for the N = 1 theories, where the supergravity

action is supplemented with the action of the brane, which has been conveniently smeared,

and a solution of the equations of motion for the supergravity plus brane system is found.

In the approach of [39] the adjoint (color) degrees of freedom are represented by fluxes,

whereas the fundamental (flavor) fields are generated by branes.

Despite the limitations of our approach just discussed we think that it provides a non-

trivial realization of the holographic idea (see [40] for a rigorous treatment) and it would

be interesting in the future to look at some generalizations of our results. For example, it

has been argued in [41] that the Higgs branch of the D3-D7 system can be generated by

turning on a non-zero instanton field on the D7-brane probe. This result could be clearly

generalized for any Dp-D(p+4) intersection. Similarly, in the Dp-D(p+2) system one can

switch a non-zero flux of the worldvolume gauge field across the S2. As checked in ref. [23],

in order to preserve some fraction of supersymmetry one has to introduce some bending on

the defect boundary. Clearly, the analysis of the fluctuations around such configurations

could shed light to understand the nature of the deformation induced by the flux on the

field theory side.

It is also of great interest to look at defect theories with reduced supersymmetry. One of

such theories is obtained by embedding a D5-brane in the AdS5×T 1,1 geometry. The precise

form of the embedding in this case can be found in [17]. Actually, the T 1,1 space can be sub-

stituted by any Sasaki-Einstein space [42], as illustrated in [43] for the Y p,q manifold. The

supersymmetric defects in the Maldacena-Nuñez background have been obtained in ref. [44].

We hope to make some progress along these lines in the future.
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A. Change of variables for the exact spectra

Let us consider an equation of the type:

z(1 − z)φ′′ + (α + βz)φ′ + [γ + δ z−1 + ε (1 − z)−1]φ = 0 , (A.1)

where φ = φ(z), the prime denotes derivative with respect to z and α, β, γ, δ and ε are

constants. The solution of this equation can be written as

φ(z) = zf (1 − z)g P (z) , (A.2)

where P (z) satisfies the hypergeometric equation

z(1 − z)P ′′ + [c − (a + b + 1)z]P ′ − abP = 0 . (A.3)

The values of the exponents f and g are

f =
1 − α + λ1

√

(α − 1)2 − 4δ

2
,

g =
α + β + 1 + λ2

√

(α + β + 1)2 − 4ε

2
, (A.4)

where λ1 and λ2 are signs which can be chosen by convenience. Moreover, a, b and c are

given by:

a = f + g − 1 + β +
√

4γ + (β + 1)2

2
,

b = f + g − 1 + β −
√

4γ + (β + 1)2

2
,

c = α + 2f . (A.5)

There are two solutions for P (z) in terms of the hypergeometric function. The first one is:

P (z) = F (a, b; c; z) . (A.6)

The second solution is:

P (z) = z1−c F (a − c + 1, b − c + 1; 2 − c; z) . (A.7)
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B. Fluctuations of the Dp-D(p+2) system

In this section we analyze the full set of fluctuations of the (p− 1|Dp ⊥ D(p + 2)) intersec-

tions for p < 5. Many of the results are direct generalizations of those corresponding to the

D3-D5 system studied in section 3. Our starting point is the Dirac-Born-Infeld lagrangian

density of the D(p+2)-brane probe, which is the sum of the Born-Infeld part LBI and the

Wess-Zumino part LWZ , which for the case at hand are given by:

LBI = −e−φ
√

− det(g + F ) , LWZ = P [C(p+1) ] ∧ F , (B.1)

where, again, we are taking the D(p+2)-brane tension equal to one and F = dA is the

worldvolume gauge field. We shall expand the action around the configuration in which

both types of branes are separated a fixed distance L. Let χ be the scalars transverse to

both types of branes and let X denote the scalar which is transverse to the probe and that

is directed along the worldvolume of the Dp-branes of the background (i.e. X ≡ xp). At

quadratic order, the Born-Infeld lagrangian becomes:

LBI = −ρ2
√

g̃

[

1

2

[

R2

ρ2 + L2

]
7−p
4

Gab ∂aχ∂bχ +
1

2

[

ρ2 + L2

R2

]
7−p
4

Gab∂aX∂bX +
1

4
FabF

ab

]

,

(B.2)

where Gab is the induced metric of the unperturbed static configuration, given by:

Gabdξadξb =

[

ρ2 + L2

R2

]
7−p
4

dx2
1,p−1 +

[

R2

ρ2 + L2

]
7−p
4

[

dρ2 + ρ2 dΩ2
2

]

. (B.3)

Let us now write the explicit form of the Wess-Zumino term LWZ . Recall that the

Ramond-Ramond (p+1)-form potential C(p+1) has components along the Minkowski direc-

tions x0 · · · xp (see eq. (2.15)). Therefore, it is clear from the expression of LWZ in (B.1)

that the potential C(p+1) induces a coupling between the scalar X and the components of

the worldvolume field F along the radial coordinate ρ and along the angular directions of

the two-sphere (which we denote by θ and ϕ). Actually, one can prove that:

LWZ =

[

ρ2 + L2

R2

]
7−p
2

[∂ρX Fθϕ + ∂θX Fϕρ + ∂ϕX Fρθ ] . (B.4)

Integrating by parts, one can rewrite LWZ as:

LWZ = −7 − p

2

ρ

R7−p

[

ρ2 + L2
]

5−p
2

XεijFij , (B.5)

where i, j denote components along the S2 and εij = ±1. As a check of the expressions (B.2)

and (B.5) for LBI and LWZ notice that, by taking p = 3, they reduce to the ones found in

section 3 for the D3-D5 system.

Let us study first fluctuations of the scalars χ which, as is evident from eqs. (B.2)

and (B.5), are decoupled from the other modes. The corresponding equations of motion
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(0|D1 ⊥ D3) with l = 0

n WKB Numerical

0 7.40 5.68

1 34.54 32.40

2 81.42 79.06

3 148.04 145.52

4 234.40 231.76

5 340.50 337.76

(1|D2 ⊥ D4) with l = 0

n WKB Numerical

0 5.73 4.34

1 25.21 23.66

2 58.44 56.80

3 105.42 103.74

4 166.15 164.44

5 240.63 238.92

(3|D4 ⊥ D6) with l = 0

n WKB Numerical

0 2.15 1.68

1 7.18 6.78

2 15.07 14.72

3 25.84 25.58

4 39.48 39.34

5 55.99 56.02

Table 5: Numerical and WKB values of M2 (in units of R7−pLp−5) for the Sl modes of the

Dp-D(p+2) intersection for p = 1, 2, 4 and l = 0.

can be obtained from the ones of a general intersection with p2 = p + 2 and d = p− 1 and

with the γi written in eq. (2.14). The resulting WKB spectra is obtained by plugging these

parameters in the general expression (2.65). One gets:

MWKB
S (n, l) = 2

√
π

L
5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)

(

n +
7 − p

5 − p

(

l +
1

2

))

, (B.6)

where R is given by eq. (2.13). Moreover, the behavior of the fluctuation ξ when % → 0 is

of the form ξ ∼ %γ , where γ satisfies a quadratic equation whose two roots are γ = l,−l−1.

Clearly, the regular solution should correspond to the root γ = l, i.e. ξ must behave as:

ξ ∼ %l , as % → 0 . (B.7)

In table 5 we compare the numerical results for M̄ with the WKB formulas for some

(p − 1|Dp ⊥ D(p + 2)) intersections.

We now want to address the analysis of the remaining fluctuation modes. First of all,

from the expressions of LBI and LWZ (eqs. (B.2) and (B.5)) it is straightforward to find

the equation of motion of the scalar X, namely:

R
7−p
2 ∂a

(

ρ2
√

g̃
[

ρ2 + L2
]

7−p
4 Gab∂bX

)

− 7 − p

2
ρ

[

ρ2 + L2
]

5−p
2

εijFij = 0 , (B.8)

while those of the gauge field are:

R7−p ∂a

[

ρ2
√

g̃ F ab
]

− (7 − p) ρ
[

ρ2 + L2
]

5−p
2

εbi∂iX = 0 , (B.9)

where εbi is zero unless b is an index along the two-sphere. As in the D3-D5 case, the scalar

X is coupled to the gauge field strength Fij along the two-sphere. To decouple these two

fields we will follow the same strategy as in the exactly solvable case of section 3. First

of all, we introduce the two types of vector spherical harmonics on S2, namely Y l
i and

Ŷ l
i . These functions were defined in eqs. (3.7) and (3.9) respectively. Subsequently, we

will define the three types of modes, namely I, II and III, exactly as in the D3-D5 case
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and we will be able to decouple the corresponding equations of motion. For the general

(p− 1|Dp ⊥ D(p + 2)) intersection these equations cannot be solved analytically, although

they are easy to solve numerically and WKB expressions for the mass levels can be readily

found.

B.1 Type I modes

Let us adopt an ansatz for the gauge field and the scalar X as in eqs. (3.11) and (3.12).

The equation of motion of X (eq. (B.8)) becomes:

ρ2 R7−p∂µ∂µΛ + ∂ρ

[

ρ2
[

ρ2 + L2
]

7−p
2

∂ρΛ

]

−

− l(l + 1)
[

ρ2 + L2
]

7−p
2

Λ − (7 − p)l(l + 1)ρ
[

ρ2 + L2
]

5−p
2

φ = 0 , (B.10)

while that of the gauge field (eq. (B.9)) reduces to:

R7−p∂µ∂µφ + ∂ρ

[

[

ρ2 + L2
]

7−p
2

∂ρφ

]

−

− l(l + 1)

ρ2

[

ρ2 + L2
]

7−p
2

φ − (7 − p)ρ
[

ρ2 + L2
]

5−p
2

Λ = 0 . (B.11)

Let us next define V = ρΛ as in the D3-D5 case and the following differential operator:

∆2
(p+1) Ψ ≡ 1

(ρ2 + L2)
5−p
2

[

R7−p ∂µ∂µ Ψ + ∂ρ

[

(ρ2 + L2)
7−p
2 ∂ρ Ψ

]

]

. (B.12)

With these definitions the equations for the fluctuations become the following system of

coupled differential equations:

∆2
(p+1) V =

[

l(l + 1) + 7 − p + l(l + 1)
L2

ρ2

]

V + (7 − p)l(l + 1)φ ,

∆2
(p+1) φ =

[

l(l + 1) + l(l + 1)
L2

ρ2

]

φ + (7 − p)V . (B.13)

Let us decouple the equations (B.13) by following a procedure similar to the one employed

in [21] for the L = 0 case. With this purpose we consider first the system (B.13) for ρ → ∞.

In this UV limit (B.13) reduces to:

∆2
(p+1)

(

V

φ

)

= M
(

V

φ

)

, (B.14)

with M being the following constant matrix:

M =

(

l(l + 1) + 7 − p (7 − p)l(l + 1)

7 − p l(l + 1)

)

. (B.15)
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The UV system (B.14) is readily decoupled by finding the linear combinations of the

functions V and φ that diagonalize the matrix M. Interestingly, the eigenvalues of M are

integers and given by:

(l + 1)(l + 7 − p) , l(l + p − 6) , (B.16)

while the corresponding decoupled functions are:

Z+ = V + lφ ,

Z− = V − (l + 1)φ . (B.17)

Let us now write the equations for Z± for finite ρ. Remarkably, by substituting the

definitions of Z± in (B.13), one can verify that these equations are still decoupled for finite

ρ and take the form:

∆2
(p+1) Z+ = (l + 1)

(

l + 7 − p + l
L2

ρ2

)

Z+ ,

∆2
(p+1) Z− = l

(

l + p − 6 + (l + 1)
L2

ρ2

)

Z− . (B.18)

As a check, let us notice that when ρ → ∞ the right-hand sides of the two equations

in (B.18) are just the eigenvalues of M, displayed in (B.16), multiplying the functions Z±.

To analyze these equations let us proceed as in the D3-D5 case and separate variables as:

Z± = eikx ξ±(ρ) . (B.19)

Except for the p = 3 case, the resulting decoupled ordinary differential equations for ξ+(ρ)

and ξ−(ρ) cannot be solved in an analytic form. However, we can extract some important

qualitative information on the behaviour of their solutions by rewriting them as Schrödinger

equations. In order to perform this analysis, let us introduce the reduced quantities % and

M̄ as:

% =
ρ

L
, M̄2 = −R7−p Lp−5 k2 . (B.20)

Moreover, by changing variables as

ey = % , ψ± =

[

1 + %2
]

7−p
4

√
%

ξ± , (B.21)

we can convert the fluctuation equations (B.18) into the Schrödinger equation

∂2
y ψ± − V±(y)ψ± = 0 , (B.22)

where the potentials V±(y) are given by:

V±(y) =

(

l +
1

2

)2

± (7 − p)

(

l +
1

2
± 1

)

e2y

1 + e2y
+

+
1

4
(7 − p)(3 − p)

e4y

(1 + e2y)2
− M̄2 e2y

(1 + e2y)
7−p
2

. (B.23)
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By looking at the asymptotic values of the potentials V± at y → ±∞ we can get the

behaviour of the fluctuations ξ± at % ≈ 0,∞. Indeed, from the potentials (B.23) we

obtain:

lim
y→−∞

V±(y) =

(

l +
1

2

)2

, lim
y→+∞

V±(y) =

(

l +
1

2
± 7 − p

2

)2

. (B.24)

From these values one can prove that for % ≈ 0 the functions ξ± behave as:

ξ± ≈ c1%
l+1 + c2%

−l , (ρ ≈ 0) , (B.25)

while for % → ∞ one gets:

ξ+ ≈ d+
1 %−(l+7−p) + d+

2 %l+1 ,

ξ− ≈ d−1 %−l + d−2 %l+p−6 , (% → ∞) . (B.26)

Obviously, the regular solutions at % → 0 for any l ≥ 0 are those which behave as %l+1 for

small %, i.e. those with c2 = 0 in eq. (B.25). Moreover, we should also impose that ξ± vanish

when % → ∞. From eq. (B.26) we notice that the behaviour of the ξ+ modes is different

from that of the ξ−’s and, therefore, both cases must be analyzed separately. Clearly,

only those ξ+ modes for which d+
2 = 0 are normalizable. In analogy with the D3-D5 case

studied in section 3, let us call I l
+ to these modes. On the contrary, the two exponents of %

in the expression giving the % → ∞ behaviour of ξ− in (B.26) could be negative and, thus,

we have two types of modes. Generalizing the case of the D3-D5 system, the modes with

d−2 = 0 (d−1 = 0) will be denoted by I l
− (Ĩ l

−). Therefore, the different behaviours at % → ∞
are:

I l
+ =⇒ ξ+ ∼ %−(l+7−p) , (l ≥ 0) ,

I l
− =⇒ ξ− ∼ %−l , (l ≥ 1) ,

Ĩ l
− =⇒ ξ− ∼ %l+p−6 , (1 ≤ l < 6 − p) , (B.27)

where, we have taken into account that for l = 0 only the ξ+ modes exist (see section 3).

As in the D3-D5 intersection, notice that the Ĩ l
− modes only exist for a finite number of

values of the angular quantum number l.

The behaviours displayed in (B.27) can be used to characterize the different types of

modes in the numerical calculations of the energy levels (see below). It is also interesting

to study these levels in the WKB approximation. In particular it is interesting to find out

how the WKB approximation distinguishes between the two types of ξ− modes. The key

observation in this respect is to realize that within the WKB approach the solution of the

wave equation that is selected is that in which the “wave function” ψ± vanishes when we

move beyond the turning points of the potential. Using the fact that ψ± ≈ %3− p
2 ξ± for

large %, one can check immediately that for the I l
+ modes ψ+ ≈ %−4−l+ p

2 , which always

vanish for % → ∞. On the contrary, for the I l
− (Ĩ l

−) modes ψ− ≈ %3−l− p
2 (ψ− ≈ %−3+l+ p

2 ),

which means that for l ≥ 3 − p
2 the WKB approximation picks up the I l

− branch whereas
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(0|D1 ⊥ D3)

n I l=0
+ Ĩ l=1

−
0 27.06 22.04

1 69.41 63.75

2 131.38 125.26

3 213.01 206.55

4 314.36 307.60

5 435.41 428.41

(1|D2 ⊥ D4)

n I l=0
+ Ĩ l=1

−
0 21.04 15.00

1 52.13 43.63

2 96.92 86.02

3 155.43 142.17

4 227.68 212.06

5 313.67 259.71

Table 6: M̄2 for the I l=0
+ and Ĩ l=1

−
modes of the D1-D3 intersection (left) and D2-D4 system

(right).

for l ≤ 3 − p
2 the Ĩ l

− modes are selected2. The sign of l − 3 + p
2 is relevant when one

computes the quantity β2, defined in (2.60), which in turn is needed to apply the WKB

energy formula (2.61). Applying these ideas to the case at hand, the WKB energy levels

for the I± modes are given by:

MWKB
I±

(n, l) = 2
√

π
L

5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)

(

n +
7 − p

5 − p

(

l +
1

2
± 1

))

, (B.28)

whereas the WKB energy levels for the Ĩ− modes are:

MWKB
Ĩ−

(n, l) = 2
√

π
L

5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)

(

n +
7 − p

5 − p
+

3 − p

5 − p

(

l +
1

2

))

. (B.29)

Let us use the WKB mass formulae (B.28) and (B.29) to notice some regularities, which can

be subsequently checked with the numerical calculations. First of all, by direct comparison

of (B.6) and (B.28) one gets that the masses of the I± modes are related to those of the

scalar fluctuations as:

MWKB
I±

(n, l) = MWKB
S (n, l ± 1) . (B.30)

We have also verified that this relation holds numerically. In the case of the D3-D5 intersec-

tion the analogue of (B.30), namely (3.51), was crucial to organize the different fluctuations

in massive supermultiplets. Notice also that the WKB formula (B.29) for the masses of the

Ĩ− modes gives a result which is independent of l only for p = 3 and, actually, it coincides

with the exact result (3.33) in the case of the D3-D5 system. In table 6 we list the mass

levels obtained numerically for the I+ fluctuations for l = 0 and for the Ĩ− modes for l = 1.

As mentioned above the levels for I l=1
− are equal, within the accuracy of our numerical

calculation, to the ones of the Sl=0 fluctuations, which were given at the beginning of this

section.

2Notice that for l = 3 −
p

2
the two types of modes behave in the same way for % → ∞ and there is no

real distinction between them. This case can only happen for even p.
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B.2 Type II modes

As a generalization of the case of the D3-D5 intersection, let us consider a configuration in

which the scalar field X vanishes and the vector field has only non-vanishing components

along the Minkowski directions xµ, which are given by the ansatz of eqs. (3.34) and (3.37).

It is immediate to verify that the equations for the gauge field components Aρ and Ai

are identically satisfied, whereas the equation of motion for Aµ, in terms of the reduced

variables % = ρ/L and M̄2 = R7−p Lp−5 M2, is equivalent to:

∂%(%
2 ∂%χ ) +

[

M̄2 %2

(%2 + 1 )
7−p
2

− l(l + 1)

]

χ = 0 . (B.31)

Eq. (B.31) is exactly the same as the one corresponding to the scalar fluctuations. Therefore

we conclude that, as it happened for the D3-D5 system, the spectrum of type II vector

modes is identical to the one corresponding to the scalar modes.

B.3 Type III modes

Let us consider the type III modes with the same ansatz (3.39) as in the D3-D5 system.

The equation for Aρ is now:

ρ2 R7−p∂µ∂µφ − l(l + 1)
[

ρ2 + L2
]

7−p
2

(φ − ∂ρφ̃) = 0 . (B.32)

The equation for Ai is:

R7−p∂µ∂µφ̃ + ∂ρ

[

(ρ2 + L2)
7−p
2 (∂ρφ̃ − φ)

]

= 0 , (B.33)

and the equation for Aµ is exactly the same as in the D3-D5 intersection, namely (3.43).

Using these relations, the two equations written above are equivalent. Separating variables

in φ as in the D3-D5 case, we obtain the following equation:

1

%2
∂2

%

(

%2ζ
)

+

[

M̄2

(1 + %2)
7−p
2

− l(l + 1)

%2

]

ζ = 0 . (B.34)

In order to obtain the spectrum derived from this equation, let us perform a change of

variables to convert (B.34) into the Schrödinger equation (2.34). This change of variables

is the following:

ey = % , ψ = %
3

2 ζ . (B.35)

The potential V of (2.34) after this change of variables is:

V =
(

l +
1

2

)2
− M̄2 e2y

(1 + e2y)
7−p
2

, (B.36)

which is just the same as the one corresponding to the scalar excitations. Therefore,

we conclude that the mass levels of these modes of type III are the same as the ones

corresponding to the scalar fluctuations. Putting together the results corresponding to the

modes of types II and III, we conclude that the vector fluctuations have a mass spectrum

which coincides with that of the scalar modes, namely:

MV (n, l) = MS(n, l) , (B.37)

a result which generalizes the one for the D3-D5 intersection.
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C. Fluctuations of the Dp-Dp system

The lagrangian density of a Dp-brane probe in the background generated by a stack of

Dp-branes is the sum of the Born-Infeld and Wess-Zumino terms, which are given by:

LBI = −e−φ
√

− det(g + F ) , LWZ = P [C(p+1) ] . (C.1)

In this section we will analyze the (p−2|Dp ⊥ Dp) intersection for 2 ≤ p < 5. The induced

metric on the worldvolume of the probe for a static configuration of such intersection in

which the branes are separated a constant distance L is given by:

Gabdξadξb =

[

ρ2 + L2

R2

]
7−p
4

dx2
1,p−2 +

[

R2

ρ2 + L2

]
7−p
4

[

dρ2 + ρ2 dΩ2
1

]

. (C.2)

Let us now study the quadratic fluctuations around the static configuration. As in previous

sections, let us denote by χ the scalars transverse to both types of branes. Moreover, we

will assume that the Dp-brane probe intersects the Dp-branes of the background along

x0 · · · xp−2 and we will denote the remaining Minkowski coordinates as:

λ1 = xp−1 , λ2 = xp . (C.3)

The lagrangian for the quadratic fluctuations can be obtained straightforwardly by expand-

ing (C.1). Indeed, the contribution from the Born-Infeld lagrangian is:

LBI = −ρ

[

1

2

[

R2

ρ2 + L2

]
7−p
4

Gab ∂aχ∂bχ+
1

2

[

ρ2 + L2

R2

]
7−p
4

Gab∂aλi∂bλi+
1

4
FabF

ab

]

, (C.4)

while the Wess-Zumino term becomes:

LWZ =

[

ρ2 + L2

R2

]
7−p
2

εij∂ρλi ∂ϕλj . (C.5)

The analysis of the χ fluctuations reduces to the general case of section 2 (see eq. (2.33))

with γ1 and γ2 as in eq. (2.14), p2 = p and d = p−2. Notice that in this case the equation for

the fluctuations depends on l2. As argued in the analysis of the (1|D3 ⊥ D3) intersection,

for this real field χ we can restrict ourselves to the case l ≥ 0. By using the asymptotic

limits of the equivalent Schrödinger potential (eq. (2.37)) one readily gets that χ ∼ %±l

both for % → ∞ and % → 0. The Sl modes in this case will be defined as those modes

which behave as %l for % ≈ 0 and as %−l for % → ∞. The WKB mass formula for these

modes can be obtained from (2.65), namely:

MWKB
S (n, l) = 2

√
π

L
5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)
(

n +
7 − p

5 − p
l
)

. (C.6)

Notice that this result coincides with the exact one (4.5) for p = 3 and l = 1. Moreover, the

quadratic and linear terms in n for M2 are also reproduced for p = 3 and arbitrary l. In

table 7 we give the numerical results and the WKB estimates for M̄2 for the intersections

of the type (p − 2|Dp ⊥ Dp) for p = 2, 4 and l = 1.
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(0|D2 ⊥ D2) with l = 1

n WKB Numerical

0 11.46 11.34

1 36.67 36.54

2 75.63 75.50

3 128.34 128.20

4 194.80 194.66

5 275.01 274.88

(2|D4 ⊥ D4) with l = 1

n WKB Numerical

0 4.31 4.68

1 11.48 11.88

2 21.53 21.94

3 34.45 34.86

4 50.24 50.66

5 68.91 69.34

Table 7: Numerical and WKB values for the Sl modes of the D2-D2 and D4-D4 intersections for

l = 1.

C.1 Scalar fluctuations

The equations of motion of the λi’s derived from LBI + LWZ are:

R
7−p
2 ∂a

[

ρ (ρ2 + L2)
7−p
4 Gab∂bλi

]

− (7 − p)ρ (ρ2 + L2)
5−p
2 εij∂ϕλj = 0 . (C.7)

Let us separate variables and define the complex combination w as in the D3-D3 case

(eqs. (4.7) and (4.9)). The decoupled equations become:

∂%

[

% (%2 + 1)
7−p
2 ∂% w

]

+

[

M̄2% − l2
(%2 + 1)

7−p
2

%
+ (7 − p)l %(%2 + 1)

5−p
2

]

w = 0 . (C.8)

In order to transform this equation into the Schrödinger equation (2.34), let us change

variables as:

ey = % , ψ =
[

1 + %2
]

7−p
4

w . (C.9)

The potential in this case becomes:

V (y) = l2 + (7 − p)(1 − l)
e2y

1 + e2y
+

+
1

4
(7 − p)(3 − p)

e4y

(1 + e2y)2
− M̄2 e2y

(1 + e2y)
7−p
2

. (C.10)

The asymptotic values of V can be readily computed, with the result:

lim
y→−∞

V (y) = l2 , lim
y→+∞

V (y) =

(

l − 7 − p

2

)2

. (C.11)

From these values and the relation between ψ and w we obtain that for % ≈ 0:

w ≈ c1%
l + c2%

−l , (% ≈ 0) , (C.12)

whereas for large ρ we have:

w ≈ d1%
−l + d2%

l+p−7 , (% → ∞) . (C.13)
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Following the steps of the analysis of the scalar fluctuations in the D3-D3 system, the

different modes are characterized by their behaviour at % → ∞, as follows:

W l
+ =⇒ w ∼ %−l ,

W l
− =⇒ w ∼ %l+p−7 . (C.14)

In addition the modes should not blow up at % = 0, i.e. they should behave as %|l| near

% = 0. Interestingly, the WKB approximation selects the W l
+ or W l

− modes, depending on

the value of l. Indeed, for large % the functions w and ψ are related as w ∼ %
p−7

2 ψ and,

within the WKB approach, the wave function ψ vanishes as ψ ∼ %−|l− 7−p
2

| when % → ∞.

It follows that w behaves as in the W l
+ branch for l ≥ 7−p

2 and as in the W l
− modes for

l ≤ 7−p
2 . To compute the actual values of the WKB energy levels we need to evaluate the

coefficients αi and βi defined in eqs. (2.59) and (2.60). In the present case these coefficients

are:

α1 = 2 , α2 = 2| l | , β1 = 5 − p , β2 = | 2l − 7 + p | . (C.15)

The appearance of the absolute value on the expressions of α2 and β2 in (C.15) forces us

to consider different ranges of l. For l ≥ 7−p
2 the WKB method selects the W l

+ branch and

the corresponding energy levels are:

MWKB
W+

(n, l) = 2
√

π
L

5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)
(

n +
7 − p

5 − p
(l − 1)

)

,

(

l ≥ 7 − p

2

)

.

(C.16)

This mass spectrum is related to the one corresponding to the transverse scalar excitations

as follows:

MWKB
W+

(n, l) = MWKB
S (n, l − 1) ,

(

l ≥ 7 − p

2

)

. (C.17)

When l ≤ 0 the W− branch is selected by the WKB approach and one gets the following

mass formula:

MWKB
W−

(n, l) = 2
√

π
L

5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)
(

n +
7 − p

5 − p
(1 − l)

)

, (l ≤ 0) , (C.18)

which is related to the spectrum of the Sl modes as:

MWKB
W−

(n, l) = MWKB
S (n, 1 − l) , (l ≤ 0) . (C.19)

We have checked that the relations (C.17) and (C.19) are well satisfied by the masses

computed by solving numerically the corresponding fluctuation equations.

For the range 0 ≤ l ≤ 7−p
2 the WKB method picks up the W− branch and one gets:

MWKB
W−

(n, l) = 2
√

π
L

5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)

(

n + 2l +
7 − p

5 − p
(1 − l)

)

,

(

0 ≤ l ≤ 7 − p

2

)

.

(C.20)

We have checked that (C.20) represents fairly well the results obtained numerically.

– 45 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
7

Notice that the expression (C.16) of MWKB
W+

vanishes for n = 0, l = 1. Actually, when

the mass M vanishes, the equation (C.8) for the fluctuations can be written as:

%2(1 + %2) ∂2
%w + [1 + (8 − p)%2 ] % ∂%w − l[l − (7 − p − l)%2 ]w = 0 . (C.21)

This equation can be mapped into the hypergeometric equation. Actually, one of its

solutions is just w = ρ−l. The second solution can be written in terms of the hypergeometric

function as follows:

w = %l F

(

l,
7 − p

2
; 1 + l;−%2

)

. (C.22)

When p = 3 and l = 1 this solution reduces to the one written in (4.16), which represents

the holomorphic map of the Higgs branch of the D3-D3 intersection.

C.2 Vector fluctuations

Let us analyze the configurations of the gauge field which are given by the same ansatzs

as in the D3-D3 intersection. First of all, we consider a configuration as the one displayed

in eq. (4.23), in which the only non-vanishing components of the gauge field are Aµ, which

depends on a function φ(ρ). After a short calculation one can verify that the equations of

motion of the gauge field reduce to the following equation for φ:

∂% (% ∂% φ) +

[

M̄2 %

(1 + %2)
7−p
2

− l2

%

]

φ = 0 , (C.23)

where we have already used the reduced variables % and M̄ defined in eq. (B.20). Eq. (C.23)

is just the same as the one satisfied by the transverse scalars and, therefore, the correspond-

ing spectra are identical. Let us next consider an ansatz as in eq. (4.25), which depends

on two functions φ and φ̃. The equation for Aρ in this case becomes:

il∂ρφ̃ − l2φ + M2R7−p ρ2

(ρ2 + L2)
7−p
2

φ = 0 . (C.24)

Moreover, the equation for Aϕ is:

∂ρ

[

(ρ2 + L2)
7−p
2

ρ

(

∂ρφ̃ + ilφ
)

]

+
M2R7−p

ρ
φ̃ = 0 . (C.25)

The equation for Aµ gives a relation between φ and φ̃, which is the same as in the D3-D3

intersection, namely eq. (4.28). By using this relation the remaining equations reduce to

the following equation for φ:

∂ρ

[

ρ ∂ρ(ρφ)
]

+

[

ρ2

(ρ2 + L2)
7−p
2

M2 − l2

]

φ = 0 . (C.26)

This equation becomes again just the same as the one corresponding to the transverse

scalars if we redefine the fluctuation as φ̂ = ρφ. Then, the spectrum of these modes

coincides again with that of the transverse scalars. The conclusion we arrive at is that,

also in this case, the scalar and vector modes are degenerate in mass, i.e.:

MV (n, l) = MS(n, l) . (C.27)
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D. Fluctuations of the Dp-D(p+4) system

Let us consider a D(p+4)-brane probe embedded in the background created by a Dp-brane

in such a way that the probe fills the (p+1)-dimensional worldvolume of the background

brane for 1 ≤ p < 5. If L denotes the distance between both types of branes, the induced

metric on the D(p+4) worldvolume is:

Gabdξadξb =

[

ρ2 + L2

R2

]
7−p
4

dx2
1,p +

[

R2

ρ2 + L2

]
7−p
4

[

dρ2 + ρ2 dΩ2
3

]

. (D.1)

The dynamics of the probe is governed by a lagrangian density which is the sum of the

Born-Infeld term LBI and the Wess-Zumino term LWZ . The expression of LBI is just

the same as the one appearing in (B.1) and (C.1). By expanding it around the static

configuration, one gets the following expression:

LBI = −ρ3
√

g̃

[

1

2

[

R2

ρ2 + L2

]
7−p
4

Gab ∂aχ∂bχ +
1

4
FabF

ab

]

, (D.2)

where χ are the fluctuations of the scalars transverse to the probe and Fab is the strength

of the wordlvolume gauge field. The Wess-Zumino lagrangian in this case is:

LWZ =
1

2
P [C(p+1) ] ∧ F ∧ F . (D.3)

Using the expression of the Ramond-Ramond potential C(p+1) given in eq. (2.15) and

dropping terms that do not contribute to the equations of motion we get:

LWZ =

[

ρ2 + L2

R2

]
7−p
2

εijk ∂ρ Ai ∂j Ak . (D.4)

D.1 Scalar fluctuations

The equations of motion for the scalar fields χ are a particular case of those studied in

section 2. Indeed, in this case one must take γ1 and γ2 as given in eq. (2.14), p2 = p + 4

and d = p. Using these values in the WKB estimate (2.65), we arrive at the expression:

MWKB
S (n, l) = 2

√
π

L
5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)
(

n +
7 − p

5 − p
(l + 1)

)

. (D.5)

In table 8 we compare the numerical values of the masses for the scalar fluctuations

with the corresponding WKB estimates.

D.2 Vector fluctuations

The equation of motion of the gauge field derived from LBI +LWZ of eqs. (D.2) and (D.4)

takes the form:

∂a

[

ρ3
√

g̃ F ab
]

− (7 − p)
ρ

R7−p

[

ρ2 + L2
]

5−p
2

εbjk ∂jAk = 0 , (D.6)
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(1|D1 ⊥ D5) with l = 0

n WKB Numerical

0 14.80 14.70

1 49.35 49.22

2 103.63 103.50

3 177.65 177.54

4 271.41 271.30

5 384.91 384.80

(2|D2 ⊥ D6) with l = 0

n WKB Numerical

0 11.46 11.34

1 36.67 36.54

2 75.63 75.50

3 128.34 128.20

4 194.80 194.66

5 275.01 274.88

(4|D4 ⊥ D8) with l = 0

n WKB Numerical

0 4.31 4.68

1 11.48 11.88

2 21.53 21.94

3 34.45 34.86

4 50.24 50.66

5 68.91 69.34

Table 8: Values of M̄2 obtained numerically and with the WKB method for the scalar modes of

the D1-D5, D2-D6 and D4-D8 intersections for l = 0.

where εbjk is non-vanishing only when b is an index along the S3.

Let us study the solutions of this equation. Following [7], we can expand Aµ and Aρ

in (scalar) spherical harmonics on the S3, and Ai in vector spherical harmonics. We can

construct three classes of vector spherical harmonics on the S3. One is simply given by

Y l
i ≡ ∇iY

l, and the other two, denoted by Y l,±
i for l ≥ 1, transform in the ( l∓1

2 , l±1
2 )

representation of SO(4) and satisfy:

∇i ∇i Y
l,±
j − Rk

j Y l,±
k = −(l + 1)2 Y l,±

j ,

εijk ∇j Y l,±
k = ±(l + 1)Y l,±

i ,

∇i Y l,±
i = 0 , (D.7)

where Ri
j = 2δi

j is the Ricci tensor of a three-sphere of unit radius.

D.2.1 Type I modes

As argued in [7], the modes containing Y l,±
i do not mix with the others due to the fact

that they are in different representations of SO(4). Accordingly, let us take the ansatz:

Aµ = 0 , Aρ = 0 , Ai = Λ±(x, ρ)Y l,±
i (S3) . (D.8)

The equation of motion (D.6) reduces to the following equation for Λ±(x, ρ):

ρR7−p ∂µ∂µΛ± + ∂ρ

[

ρ (ρ2 + L2)
7−p
2 ∂ρ Λ±

]

− (l + 1)2
(ρ2 + L2)

7−p
2

ρ
Λ± ∓

∓ (7 − p) (l + 1) ρ (ρ2 + L2)
5−p
2 Λ± = 0 . (D.9)

Let us separate variables in (D.9) as in previous cases, namely:

Λ±(x, ρ) = eikx ξ±(ρ) . (D.10)

Moreover, we shall introduce the reduced quantities % and M̄ , defined as in (B.20). By

changing variables as:

ey = % , ψ± =
[

1 + %2
]

7−p
4

ξ± , (D.11)

– 48 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
7

we can convert the fluctuation equation (D.9) into a Schrödinger equation for ψ±, with the

potential V± given by:

V±(y) =

(

l + 1

)2

± (7 − p)

(

l + 1 ± 1

)

e2y

1 + e2y
+

+
1

4
(7 − p)(3 − p)

e4y

(1 + e2y)2
− M̄2 e2y

(1 + e2y)
7−p
2

. (D.12)

By looking at the asymptotic value of the potential V± at y → ±∞ we can get the behaviour

of the fluctuations ξ± at % ≈ 0,∞. Indeed, from the above potentials we obtain:

lim
y→−∞

V±(y) =

(

l + 1

)2

, lim
y→+∞

V±(y) =

(

l + 1 ± 7 − p

2

)2

. (D.13)

From these values one can prove that for % ≈ 0:

ξ± ≈ c1%
l+1 + c2%

−(l+1) , (% ≈ 0) , (D.14)

whereas for % → ∞ one gets:

ξ+ ≈ d+
1 %−(l+8−p) + d+

2 %l+1 ,

ξ− ≈ d−1 %−(l+1) + d−2 %l+p−6 , (% → ∞) . (D.15)

Obviously, the regular solutions should behave as %l+1 as % → 0. The regularity at the UV

requires also the vanishing of ξ± when % → ∞. For the ξ+ fluctuation this requirement is

only satisfied when d+
2 = 0 in (D.15). This condition defines the so-called I l

+ modes. On

the other hand, for the ξ− fluctuation we have clearly two possibilities. The modes with

d−2 = 0 for l ≥ 1 will be denoted by I l
−, whereas those with d−1 = 0 for 1 ≤ l < 6 − p will

be called Ĩ l
−. Summarizing, the different behaviours at % → ∞ are:

I l
+ =⇒ ξ+ ∼ %−(l+8−p) , (l ≥ 1) ,

I l
− =⇒ ξ− ∼ %−(l+1) , (l ≥ 1) ,

Ĩ l
− =⇒ ξ− ∼ %l+p−6 , (1 ≤ l < 6 − p) . (D.16)

In order to get information about the mass levels for these modes, let us compute the

different spectra in the WKB approximation. One can readily verify that the WKB method

selects always the I l
+ modes of the ξ+ fluctuation, whereas it picks up one of the two

branches of the ξ− modes, depending on the value of l. Indeed, if l ≥ 5−p
2 , the I l

− branch

is selected, while the Ĩ l
− modes are picked up otherwise. The corresponding WKB mass

levels are given by:

MWKB
I±

(n, l) = 2
√

π
L

5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)

(

n +
7 − p

5 − p
(l + 1 ± 1)

)

,

MWKB
Ĩ−

(n, l) = 2
√

π
L

5−p
2

R
7−p
2

Γ
(

7−p
4

)

Γ
(

5−p
4

)

√

(n + 1)

(

n +
7 − p

5 − p
+

3 − p

5 − p
(l + 1)

)

, (D.17)

– 49 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
7

where we have assumed that for each case l varies in the range just discussed. By comparing

eqs. (D.17) and (D.5) we conclude that:

MI±(n, l) = MS(n, l ± 1) . (D.18)

Actually, the relation (D.18) is satisfied by the masses found numerically with large ac-

curacy and, therefore it seems to hold beyond the WKB approximation3. Moreover, the

WKB formula in (D.17) for the masses of the Ĩ l
− modes reproduces reasonably well the

values found in the numerical calculations.

D.2.2 Type II modes

As before we shall take the ansatz:

Aµ = φµ(x, ρ)Y l(S3) , Aρ = 0 , Ai = 0 , (D.19)

where ∂µφµ = 0. The equations of motion for Aρ and Ai are automatically satisfied. Let

us, expanding as before in a plane wave basis, represent φµ as:

φµ = ξµ eikx χ(ρ) , (D.20)

with ξµ being a constant vector satisfying kµξµ = 0. The equation for Aµ yields:

∂%(%
3∂%χ) + M̄2 %3

(1 + %2)
7−p
2

χ − l (l + 2)χ = 0 , (D.21)

which is the same equation as for the transverse scalar modes. Therefore, we conclude that

MII(n, l) = MS(n, l) . (D.22)

D.2.3 Type III modes

Let us take the following form for the gauge field:

Aµ = 0 , Aρ = φ(x, ρ)Y l(S3) , Ai = φ̃(x, ρ)Y l
i (S3) . (D.23)

The equation for Aρ becomes:

ρ3 R7−p ∂µ ∂µφ + l(l + 2) ρ (ρ2 + L2)
7−p
2 (∂ρφ̃ − φ) = 0 . (D.24)

The equation for Aµ can be written as:

∂µ

[

l(l + 2) ρ φ̃ − ∂ρ(ρ
3φ)

]

= 0 . (D.25)

Expanding φ and φ̃ in a plane wave basis one can write:

l(l + 2)φ̃ =
1

ρ
∂ρ(ρ

3φ) . (D.26)

3For p = 3 the relation (D.18) is exactly satisfied by the analytical spectra found in [7].
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For l 6= 0, one can use this relation to eliminate φ̃ in favor of φ. The equation of motion of

Aρ becomes:

∂ρ

(

1

ρ
∂ρ(ρ

3 φ)

)

− l(l + 2)φ + R7−p ρ2

(ρ2 + L2)
7−p
2

∂µ ∂µφ = 0 . (D.27)

The equation for Ai results equivalent to the above one.

Let us separate variables as in the Dp-D(p+2) case, namely:

φ(x, ρ) = eikx ζ(ρ) . (D.28)

In terms of the reduced quantities % and M̄ introduced before in (B.20), and by changing

variables as:

ey = % , ψ = %2 ζ , (D.29)

we can convert the fluctuation equation into a Schrödinger equation, where the potential

V (y) is given by:

V (y) = (l + 1)2 − M̄2 e2y

(1 + e2y)
7−p
2

. (D.30)

This potential is just the same as the one corresponding to the scalar fluctuations. It

follows that the masses of these fluctuations are the same as those corresponding to the

scalar modes, i.e.:

MIII(n, l) = MS(n, l) . (D.31)

E. Fluctuations of the F1-Dp systems

Let us now consider the intersection (0|F1 ⊥ Dp). We will treat the fundamental string

as background and the Dp-brane as a probe. The corresponding near-horizon supergravity

solution is:

ds2 =
r6

R6
( − dt2 + (dx1)2 ) + d~y · d~y ,

e−φ =
R3

r3
, (E.1)

where R is given in (2.18), ~y = (y1, . . . , y8) and r2 = ~y 2. We shall place now a Dp-brane

at a constant value of x1 and take the following set of worldvolume coordinates:

ξa = (t, y1, . . . , yp) . (E.2)

As before, we shall denote by ~z the vector formed by the 8 − p coordinates (yp+1, . . . , y8).

If ρ2 = (y1)2 + · · · + (yp)2 and if the Dp-brane is located at |~z| = L, the induced metric is:

ds2
I = −

[

ρ2 + L2

R2

]3

dt2 + dρ2 + ρ2 dΩ2
p−1 , (E.3)

where we have assumed that p > 1. We shall limit ourselves here to study the fluctuations of

the scalars χ transverse to both the F1 and the Dp-brane. These fluctuations are governed
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(0|F1 ⊥ D2) with l = 1

n WKB Numerical

0 14.80 14.70

1 49.35 49.22

2 103.63 103.50

3 177.65 177.54

4 271.41 271.30

5 384.91 384.80

(0|F1 ⊥ D5) with l = 0

n WKB Numerical

0 22.21 27.06

1 64.15 69.40

2 125.84 131.36

3 207.26 213.02

4 308.43 314.36

5 429.33 435.40

Table 9: M̄2 for the transverse scalar fluctuations of F1-D2 (l = 1) and F1-D5 (l = 0) obtained

numerically and with the WKB approximation.

by the lagrangian (2.27) for p2 = p, d = 0 and for the γi exponents written in eq. (2.18).

By changing variables as ey = % and ψ = %
p−2

2 ξ, we can convert the fluctuation into the

Schrödinger equation (2.34) with potential:

V (y) =
(

l +
p − 2

2

)2
− M̄2 e2y

(e2y + 1)3
. (E.4)

Notice that the potential (E.4) is invariant if we simultaneously change l → l + 1 and

p → p − 2. This means that the spectrum of the (0|F1 ⊥ Dp) intersection at angular

quantum number l is equivalent to that of (0|F1 ⊥ D(p − 2)) at quantum number l + 1.

For this system the corresponding WKB mass levels are:

M̄WKB = π

√

(n + 1)

(

n +
3

4
(p − 2) +

3l

2

)

. (E.5)

As discussed in section 2.5, one can prove from the asymptotic values of the poten-

tial (E.4) that, for both % → 0 and % → ∞, the fluctuation ξ behaves as ξ ∼ %γ with

γ = l,−(l + p − 2). We will select numerically the regular solutions as those which behave

as %l for small % and as %−(l+p−2) for large %. In table 9 we collect some numerical results

and the corresponding WKB estimates for some (0|F1 ⊥ Dp) intersections. By looking

at the potential of the equivalent Schrödinger problems, we notice that the transverse

fluctuations of the (0|F1 ⊥ D3) intersection are equivalent to those of the (0|D1 ⊥ D3)

configuration, while the (0|F1 ⊥ D4) intersection is equivalent to (0|D1 ⊥ D5).

F. Fluctuations of the M-theory intersections

According to the analysis performed in section 2 the basic supersymmetric orthogonal

intersections of M-theory are (1|M2 ⊥ M5), (3|M5 ⊥ M5) and (0|M2 ⊥ M2). The M2

and M5 eleven-dimensional near-horizon metrics are:

ds2
M2 =

r4

R4
(−dt2 + (dx1)2 + (dx2)2) +

R2

r2
d~y · d~y ,

ds2
M5 =

r

R
(−dt2 + (dx1)2 + · · · + (dx5)2) +

R2

r2
d~y · d~y , (F.1)
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where the radii R are given in eqs. (2.20) and (2.23). In this appendix we will restrict

ourselves to study the fluctuations of the transverse scalars for the three BPS intersections

listed in (2.22) and (2.25). For these particular modes, the worldvolume action can be

taken to be the square root of the induced metric, as it was done in section 2. We will

verify that the corresponding differential equations for these M-theory systems are identical

to some of the ones already studied for the type II theory, as expected naturally from the

relation between these two theories.

F.1 (1|M2 ⊥ M5) intersection

Let us consider a M5-brane probe in the M2-brane background written above and let

us take the worldvolume coordinates as ξa = (t, x1, y1, y2, y3, y4). We shall assemble the

orthogonal coordinates in the vector ~z = (y5, y6, y7, y8). For an embedding with x2 constant

and |~z| = L, we have the following induced metric:

ds2
I =

[

ρ2 + L2

R2

]2

( − dt2 + (dx1)2 ) +
R2

ρ2 + L2
(dρ2 + ρ2 dΩ2

3) , (F.2)

where we have used spherical coordinates to parametrize the (y1, y2, y3, y4) variables. No-

tice that for L = 0, the above metric corresponds to an AdS2 ×S3 defect of the AdS4 ×S7

geometry. The equation for the fluctuations around this configuration is:

R6

(ρ2 + L2)3
∂µ∂µ χ +

1

ρ3
∂ρ (ρ3∂ρχ) +

1

ρ2
∇i∇i χ = 0 , (F.3)

which is just the same equation as that of the transverse scalars in the D1-D5 system.

Therefore, the corresponding mass levels for these modes are exactly the same as in the

D1-D5 intersection. Notice that, in order to study the full set of fluctuations, one should

analyze the complete PST action [26], something that we will not attempt to do here.

F.2 (3|M5 ⊥ M5) intersection

We now consider a M5-brane probe in the M5-brane geometry. The worldvolume coor-

dinates are (t, x1, x2, x3, y1, y2) and the orthogonal space is parametrized by the vector

~z = (y3, y4, y5). For |~z| = L and constant x4 and x5, the induced metric is:

ds2
I =

[

ρ2 + L2

R2

]
1

2

( − dt2 + (dx1)2 + · · · + (dx3)2) +
R2

ρ2 + L2
(dρ2 + ρ2 dΩ2

1) . (F.4)

For L = 0 this metric corresponds to an AdS5 × S1 defect on the AdS7 × S4 background

geometry. The equation for the fluctuations is:

R2

(ρ2 + L2)
3

2

∂µ∂µ χ +
1

ρ
∂ρ (ρ ∂ρχ) +

1

ρ2
∇i∇i χ = 0 , (F.5)

which is identical to the one corresponding to the transverse scalars of the D4-D4 system.
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F.3 (0|M2 ⊥ M2) intersection

Let us put a M2-brane probe in the M2 geometry and take (t, y1, y2) as worldvolume

coordinates. Now ~z = (y3, . . . , y8) and we consider an embedding at x1 and x2 constant

and |~z| = L. the induced metric is:

ds2
I = −

[

ρ2 + L2

R2

]2

dt2 +
R2

ρ2 + L2
(dρ2 + ρ2 dΩ2

1) , (F.6)

which for L = 0 is just AdS2 × S1. The equation for the fluctuations becomes:

R6

(ρ2 + L2)3
∂0∂0 χ +

1

ρ
∂ρ (ρ ∂ρχ) +

1

ρ2
∇i∇i χ = 0 , (F.7)

and is identical to the one for the transverse scalars of the F1-D2 system.
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background, JHEP 09 (2005) 032 [hep-th/0507155].

– 57 –

http://jhep.sissa.it/stdsearch?paper=12%282005%29030
http://xxx.lanl.gov/abs/hep-ph/0507049
http://xxx.lanl.gov/abs/hep-ph/0512089
http://xxx.lanl.gov/abs/hep-th/0403226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C126006
http://xxx.lanl.gov/abs/hep-th/0410139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB624%2C115
http://xxx.lanl.gov/abs/hep-th/0504209
http://jhep.sissa.it/stdsearch?paper=01%282006%29112
http://xxx.lanl.gov/abs/hep-th/0511139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C026002
http://xxx.lanl.gov/abs/hep-th/0203257
http://jhep.sissa.it/stdsearch?paper=04%282004%29035
http://jhep.sissa.it/stdsearch?paper=04%282004%29035
http://xxx.lanl.gov/abs/hep-th/0401041
http://jhep.sissa.it/stdsearch?paper=11%282002%29036
http://xxx.lanl.gov/abs/hep-th/0210105
http://xxx.lanl.gov/abs/hep-th/0305069
http://jhep.sissa.it/stdsearch?paper=02%282005%29022
http://xxx.lanl.gov/abs/hep-th/0406207
http://jhep.sissa.it/stdsearch?paper=12%282004%29025
http://xxx.lanl.gov/abs/hep-th/0408113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C026007
http://xxx.lanl.gov/abs/hep-th/0505164
http://xxx.lanl.gov/abs/hep-th/0602027
http://xxx.lanl.gov/abs/hep-th/0512125
http://jhep.sissa.it/stdsearch?paper=06%282005%29052
http://xxx.lanl.gov/abs/hep-th/0502224
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C126002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C126002
http://xxx.lanl.gov/abs/hep-th/0504151
http://jhep.sissa.it/stdsearch?paper=06%282003%29002
http://xxx.lanl.gov/abs/hep-th/0505007
http://jhep.sissa.it/stdsearch?paper=03%282006%29101
http://xxx.lanl.gov/abs/hep-th/0512087
http://jhep.sissa.it/stdsearch?paper=09%282005%29032
http://xxx.lanl.gov/abs/hep-th/0507155

